Return to search

The Conserved MAP Kinase SWIP-13/ERK8 Regulates Dopamine Signaling Through Control of the Presynaptic Dopamine Transporter

Dopamine is a critical neurotransmitter used across phylogeny to regulate many aspects of behavior. Synaptic control of dopamine signaling is vital for normal nervous system function in humans, and dysregulation of this signaling is associated with many disease states, including addiction, attention-hyperactivity deficit disorder (ADHD), schizophrenia, and Parkinsonâs disease. The model organism Caenorhabditis elegans is a useful system in which to dissect nervous system function, including the synaptic regulation of dopamine signaling. Our lab has employed a forward genetic screen in C. elegans based on the dopamine-related behavior Swimming-induced paralysis (Swip) to identify swip-13, a novel genetic regulator of dopamine signaling. Genetic analysis of swip-13 mutants has revealed a role for this gene in dopamine neurons to positively regulate the activity of the presynaptic dopamine transporter DAT-1. swip-13 encodes an ortholog of the mammalian atypical MAP kinase ERK7/8, and work in human cell lines revealed a conserved role for human ERK8 in regulating the human dopamine transporter DAT. Furthermore, recent evidence supports a role for the small GTPase Rho in mediating the regulation of DAT by ERK8.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-05182016-110822
Date09 June 2016
CreatorsBermingham, Daniel Patrick
ContributorsRandy D. Blakely, David M. Miller, III, Roger J. Colbran, Roger D. Cone
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-05182016-110822/
Rightsrestrictone, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0023 seconds