Return to search

Plasticity and Inflammation following Traumatic Brain Injury

Traumatic Brain Injury (TBI) mainly affects young persons in traffic accidents and the elderly in fall accidents. Improvements in the clinical management have significantly improved the outcome following TBI but survivors still suffer from depression, memory problems, personality changes, epilepsy and fatigue. The initial injury starts a series of events that give rise to a secondary injury process and despite several clinical trials there is no drug available for clinical use that targets secondary brain injury mechanisms. Some recovery of function is seen during the first months following injury but is usually limited and there are no drugs that stimulate the recovery of lost function. Some of the recovery is attributed to plasticity, the brains ability to adapt to new circumstances, and enhancing plasticity via increased axonal growth has the potential to partly restore lost function. In this thesis mice were subjected to the controlled cortical impact model of TBI and functional outcome was evaluated using Morris water maze, the cylinder test and the rotarod. Brain tissue loss was measured in all Papers but the additional histological analyses differ among the Papers. Attempts to increase axonal growth were made by interfering with Nogo receptor function in Paper I and by conditional knockout of ephA4 in Paper II. Contrary to the hypothesis cognition was impaired in Paper I but otherwise no effects of treatment were detected in Paper I and II. Much is still unknown about plasticity and despite the discouraging results of Papers I and II this treatment approach is still worth further exploration. It is firmly established that TBI results in an inflammatory response and some aspects of it may damage brain tissue. In Papers III and IV the inflammatory response was attenuated using an IL-1β directed antibody which resulted in reduced tissue loss and edema while improving cognitive function. The results from Papers III and IV are encouraging and the possibility to find a treatment based on IL-1β inhibition appears promising.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-146551
Date January 2011
CreatorsHånell, Anders
PublisherUppsala universitet, Neurokirurgi, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 645

Page generated in 0.0019 seconds