Abrasive finishing is a machining process which alters the surface of a workpiece to achieve a specific property. Typical abrasive finishing processes focus on geometric tolerances and surface topography. Abrasive finishing is primarily dependent on finishing forces, relative velocities, and abrasive size. The material removal rate in finishing is inversely related to the surface finish. Magnetic and electric fields have been used to control the force applied to abrasives which finish the workpiece. These processes show an increase in performance when the field is used to control the process. Field assisted finishing processes can be energy intensive and expensive. A novel finishing media is proposed which does not require a field to achieve a similar force response. This media has inherent thickening mechanisms driven by shear jamming. This shear jamming mechanism can deliver forces an order of magnitude higher than shear thickening mechanisms. This novel slurry is demonstrated as a viable finishing media with performance similar to magnetic abrasive finishing. / Thesis / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/20883 |
Date | January 2017 |
Creators | Span, Joseph |
Contributors | Koshy, Philip, Mechanical Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.003 seconds