Return to search

Statistical Methods for Functional Metagenomic Analysis Based on Next-Generation Sequencing Data

Metagenomics is the study of a collective microbial genetic content recovered directly from natural (e.g., soil, ocean, and freshwater) or host-associated (e.g., human gut, skin, and oral) environmental communities that contain microorganisms, i.e., microbiomes. The rapid technological developments in next generation sequencing (NGS) technologies, enabling to sequence tens or hundreds of millions of short DNA fragments (or reads) in a single run, facilitates the studies of multiple microorganisms lived in environmental communities. Metagenomics, a relatively new but fast growing field, allows us to understand the diversity of microbes, their functions, cooperation, and evolution in a particular ecosystem. Also, it assists us to identify significantly different metabolic potentials in different environments. Particularly, metagenomic analysis on the basis of functional features (e.g., pathways, subsystems, functional roles) enables to contribute the genomic contents of microbes to human health and leads us to understand how the microbes affect human health by analyzing a metagenomic data corresponding to two or multiple populations with different clinical phenotypes (e.g., diseased and healthy, or different treatments). Currently, metagenomic analysis has substantial impact not only on genetic and environmental areas, but also on clinical applications. In our study, we focus on the development of computational and statistical methods for functional metagnomic analysis of sequencing data that is obtained from various environmental microbial samples/communities.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/320986
Date January 2014
CreatorsPookhao, Naruekamol
ContributorsAn, Lingling, An, Lingling, Slack, Donald, Billheimer, Dean
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.002 seconds