The present work deals with Description Logics (DLs), a class of knowledge representation formalisms used to represent and reason about classes of individuals and relations between such classes in a formally well-defined way. We provide novel results in three main directions. (1) Tractable reasoning revisited: in the 1990s, DL research has largely answered the question for practically relevant yet tractable DL formalisms in the negative. Due to novel application domains, especially the Life Sciences, and a surprising tractability result by Baader, we have re-visited this question, this time looking in a new direction: general terminologies (TBoxes) and extensions thereof defined over the DL EL and extensions thereof. As main positive result, we devise EL++(D)-CBoxes as a tractable DL formalism with optimal expressivity in the sense that every additional standard DL constructor, every extension of the TBox formalism, or every more powerful concrete domain, makes reasoning intractable. (2) Non-standard inferences for knowledge maintenance: non-standard inferences, such as matching, can support domain experts in maintaining DL knowledge bases in a structured and well-defined way. In order to extend their availability and promote their use, the present work extends the state of the art of non-standard inferences both w.r.t. theory and implementation. Our main results are implementations and performance evaluations of known matching algorithms for the DLs ALE and ALN, optimal non-deterministic polynomial time algorithms for matching under acyclic side conditions in ALN and sublanguages, and optimal algorithms for matching w.r.t. cyclic (and hybrid) EL-TBoxes. (3) Non-standard inferences over general concept inclusion (GCI) axioms: the utility of GCIs in modern DL knowledge bases and the relevance of non-standard inferences to knowledge maintenance naturally motivate the question for tractable DL formalism in which both can be provided. As main result, we propose hybrid EL-TBoxes as a solution to this hitherto open question.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1151394867948-82136 |
Date | 23 May 2006 |
Creators | Brandt, Sebastian-Philipp |
Contributors | Technische Universität Dresden, Informatik, Prof. Dr.-Ing. Franz Baader, Prof. Dr. rer.-nat. Bernhard Ganter, Prof. Dr.-Ing. Diego Calvanese, Prof. Dr.-Ing. Franz Baader |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0018 seconds