Return to search

High resolution spectroscopy of niobium nitride and vanadium oxide

This thesis reports the spectroscopic studies of two gaseous molecules, niobium nitride (NbN) and vanadium oxide (VO). The ³∏ — ³∆ electronic transition of NbN was recorded by laser-induced fluorescence at Doppler-limited resolution as well as at sub-Doppler resolution. Two almost identical branch features are observed in the ³∏₀ — ³∆₁ sub-band because the A-doubling in the ³∏₀ sub-state is large and almost J-independent. The ³∏₁ — ³∆₂ transition is shifted 600 cm⁻¹ to the red of its central first-order position as a result of very large second-order spin-orbit interaction effects. The shift is believed to be caused principally by the coupling of the ³∏₁ component with the ¹∏ state from the same electron configuration, with a smaller contribution from coupling of the ³∆₂ component
of the ground state with the low-lying ¹∆ state. The ³∏ and ¹∏ states are unusual in that their zero-order energies are calculated to be within 100 cm⁻¹, based on the newly observed ¹∏₁ - ³∆₂ (1,0) transition; this means that they form a very fine example of a "super-multiplet", where the spin-orbit effects within and between the states of a particular
electron configuration are larger than their separations. The spin-orbit interactions are so extensive that the fine structure can only be fitted using effective rotational and hyperfine Hamiltonians for the individual sub-states, as in case (c) coupling. From the determined hyperfine constants h and C⍳ for the three ³∏(v — 0) components, the Fermi contact constant b was found to be negative, which is consistent with the configuration πδ. Rotational analysis gave the ³∏ and ³∆ bond lengths as 1.6705 Å and 1.6622 Å, respectively.
The near-infrared electronic system of VO has been recorded in emission at Doppler-limited resolution with the 1-m FT spectrometer at Kitt Peak National Observatory. The spectrum in the 4000-14000 cm⁻¹ region consists of numerous transitions with most of them extensively analyzed. Two isolated sub-bands at 7200 cm⁻¹ have been assigned as the two spin components of a ²∏ — ²∆ transition and rotationally analyzed. The rotational constant for the lower state is found to be larger than that for the σδ² X ⁴∑⁻ ground state, indicating that the ²∆ state arises from the electron configuration σ²δ. The configuration assignment was confirmed by the derived spin-orbit coupling constant for the ²∆ state. Similar reasoning applied to the ²∏ upper state suggests that it may arise from the configuration σ²π, though the preliminary study of the hyperfine structure argues against this assignment. / Science, Faculty of / Chemistry, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/27961
Date January 1988
CreatorsHuang, Gejian
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0018 seconds