The deformation mechanisms and contact response of TiN-based thin films deposited onto a soft substrate using a physical vapour deposition (PVD) technique is still an area of both technological importance and considerable discussion. These coatings are commonly applied to various kinds of steel cutting tools, creating surfaces with enhanced tribological properties. However, no extensive systematic study of the deformation mechanisms in these thin film systems has been performed to date. In the present study, the effect of the coating microstructure, indenter geometry, coating thickness and substrate hardness on the deformation mechanisms in both TiN and TiAlN coatings of varying thickness deposited onto ductile steel substrates has been investigated using a combination of nanoindentation and microstructural analysis, including focused ion beam (FIB) milling and transmission electron microscopy (TEM). Different modes of cracking, such as columnar and transverse cracking, as well as shear steps at the coating/substrate interface, were observed. The microstructure of the TiN coatings was found to be very important in controlling their modes of deformation. Thicker coatings were seen to contain more equiaxed grains, so less columnar shearing occurred and inclined cracks were found to be a more dominant fracture type in the thicker coating. Also, it was found that soft substrates absorbed most of the energy from indentation by plastic deformation. It was found that both the TiN and TiAlN/TiN dual-layer coatings exhibited broadly similar mechanisms of deformation. The epitaxial interface between the TiAlN and TiN in the dual-layer coating did not appear to affect the deformation behaviour. As a further investigation of the overall deformation behaviour for the coating/substrate systems studied, a DualBeam FIB was used to generate three dimensional images of the indented regions which provided additional information on the crack morphology. For the first time, a systematic study of the deformation behaviour of TiN and TiAlN coatings upon indentation has been carried out. FIB milling was demonstrated to be a highly appropriate technique for characterization of the deformation behaviour of these coatings, allowing detailed, high resolution microstructural investigations to be performed in both two and three dimensions.
Identifer | oai:union.ndltd.org:ADTP/215829 |
Date | January 2005 |
Creators | Ma, Lok Wang, Materials Science & Engineering, Faculty of Science, UNSW |
Publisher | Awarded by:University of New South Wales. School of Materials Science and Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Lok Wang Ma, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0103 seconds