Hydrogen storage is a developing technology that can be used as an energy vector for sustainable energy applications such as fuel cells for transport applications or for supplying power to the grid in moments of high demand. However, before hydrogen can be used as a practical energy vector, hydrogen storage issues, such as low gravimetric storage density, need to be addressed. One possible solution could be using nanoporous materials to physically adsorb hydrogen at low temperatures and moderate pressures. Hydrogen adsorption excess isotherms in solid-state porous materials can be obtained experimentally. However, the total amount stored in them, a quantity of more practical interest, cannot be measured by experimental techniques. Therefore, a model developed at the University of Bath is used to predict the total amount of hydrogen contained in nanoporous materials from their experimentally derived excess isotherm data. According to inelastic neutron scattering experiments (TOSCA, ISIS, RAL, Oxfordshire), solid-like hydrogen is likely to exist within the pores. The model is applied in this work in order to search for relationships between intrinsic properties of the materials (BET surface area, pore volume and pore size) and the predicted total hydrogen capacity of the materials. The model assumes adsorbed hydrogen at a constant density within the pore (defined as the absolute), also taking bulk hydrogen in the pore (amount that is not considered to be adsorbed by the adsorbent), into account. Several MOF datasets have been used to search for these relations, since they are the materials that have the highest hydrogen uptake in solid-state adsorption. Different MOFs and MOF families have been tested in order to widen the range of the correlations. Also, different strategies, such as fixing the pore volume when applying the fittings, relying on experimental data, or using high pressure hydrogen isotherm data to increase the robustness of the model have been researched. These MOFs have been either synthesized and characterized at the University of Bath or their datasets obtained from literature. Some of these MOFs with zeolitic structure exhibited unreported flexibility, being their structures further characterized. Changes on accessible pore size for hydrogen storage were also investigated using C60 in IRMOF-1. The final aim of this work is to find possible correlations between BET surface area, pore volume and pore size to find out what the values of these parameters have to be in a specific material to fulfil the DOE hydrogen storage requirements.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:699002 |
Date | January 2016 |
Creators | Noguera Díaz, Antonio |
Contributors | Mays, Timothy |
Publisher | University of Bath |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0021 seconds