Return to search

Coupling Nitrogen Transport and Transformation Model with Land Surface Scheme SABAE-HW and its Application on the Canadian Prairies

The main goal of this research is to contribute to the understanding of nutrient transport and transformations in soil and its impact on groundwater on a large scale. This thesis specifically integrates the physical, chemical and biochemical nitrogen transport processes with a spatial and temporal Land Surface Scheme (LSS). Since the nitrogen biotransformation kinetics highly depends on soil moisture and soil temperature, a vertical soil nitrogen transport and transformations model was coupled with SABAE-HW. The model provides an improved interface for groundwater modeling to simulate soil moisture and soil temperature for a wide range of soil and vegetation. It is assumed that the main source of organic N is from animal manure. A-single-pool nitrogen transformation is designed to simulate nitrogen dynamics. Thus, the complete mathematical model (SABAE-HWS) is able to investigate the effects of nitrogen biochemical reactions in all seasons.
This thesis reports the first field comparison of SABAE-HW using an extensive ten-year data set from BOREAS/BERMS project located in Saskatchewan, Canada. The performance of SABAE-HWS is calibrated and verified using 3 years (2002-2004) data from Carberry site in Canada, Manitoba. The effects of three rates of hog manure application, 2500, 5000, and 7500 gal/acre, was investigated to study the distribution of soil ammonium and soil nitrate within the 120 cm of soil profile. The results clearly showed that there is a good agreement between observed and simulated soil ammonium and nitrate for all treatment at the first two years of study. However, it was found a significant difference
between observations and simulations at lower depths for 7500 gal/acre by the end of growing season of 2004. Also, 10 years climate data from OJP site was used to evaluate the effect of manure rates on the distribution of soil nitrate at Carberry site. The results indicated that to minimize the risk of nitrate leaching, the rate of manure application, accumulated soil nitrogen from earlier applications and the atmospheric conditions should be all taken into account at the same time. Comparing the results of SABAE-HWS and SHAW model also showed the importance of the crop growth model in simulating soil NH4-N and NO3-N.

Identiferoai:union.ndltd.org:MANITOBA/oai:mspace.lib.umanitoba.ca:1993/8442
Date10 January 2011
CreatorsHejazi, Seyed Alireza
ContributorsWoodbury, Allan (Civil Engineering), Akinremi, Wole (Soil Science) Loukili, Youssef (Civil Engineering) Sykes, Jonathan (Civil Engineering, University of Waterloo)
PublisherAtmosphere-Ocean
Source SetsUniversity of Manitoba Canada
Detected LanguageEnglish

Page generated in 0.0022 seconds