Return to search

Electrochemical behavior of organic radical polymer cathodes in organic radical batteries with ionic liquid electrolytes

The electrochemical behavior of a poly(2,2,6,6-tetramethylpiperidin- 1-oxyl-4-yl methacrylate) (PTMA) cathode in organic radical batteries with lithium bis(trifluoromethylsulfonyl)imide in N-butyl-N-methyl- pyrrolidinium bis(trifluoromethylsulfonyl)imide (LiTFSI/BMPTFSI) ionic liquid electrolytes is investigated. The ionic liquid electrolytes containing a high concentration of the LiTFSI salt have a high polarity, preventing the dissolution of the polyvinylidene fluoride (PVdF) binder and PTMA in the electrolytes. The results of cyclic voltammetry and AC impedance indicate that an increase in the LiTFSI concentration results in a decrease in the impedance of the lithium electrode, which affects the C-rate performance of batteries. The discharge capacity of the PTMA composite electrode in a 0.6 m LiTFSI/BMPTFSI electrolyte is 92.9 mAh g−1 at 1 C; its C-rate performance exhibits a capacity retention, 100 C/1 C, of 88.3%. Moreover, the battery with the 0.6-m LiTFSI/BMPTFSI electrolyte has very good cycle-life performance.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-1009112-155250
Date09 October 2012
CreatorsCheng, Yen-Yao
ContributorsJyh-Tsung Lee, Mao-Sung Wu, Shang-Wu (Sam) Ding
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-1009112-155250
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0016 seconds