Return to search

Application de la réflectométrie GNSS à l'étude des redistributions des masses d'eau à la surface de la terre / Application of GNSS reflectometry to the study of water storage redistribution over the Earth's surface

La réflectométrie GNSS (ou GNSS-R) est une technique de télédétection originale et pportuniste qui consiste à analyser les ondes électromagnétiques émises en continu par la soixantaine de satellites des systèmes de positionnement GNSS (GPS, GLONASS, etc.), qui sont captées par une antenne après réflexion sur la surface terrestre. Ces signaux interagissent avec la surface réfléchissante et contiennent donc des informations sur ses propriétés. Au niveau de l'antenne, les ondes réfléchies interfèrent avec celles arrivant directement des satellites. Ces interférences sont particulièrement visibles dans le rapport signal-sur-bruit (SNR, i.e., Signal-to-Noise Ratio), paramètre enregistré par une station GNSS classique. Il est ainsi possible d'inverser les séries temporelles du SNR pour estimer des caractéristiques du milieu réfléchissant. Si la faisabilité et l'intérêt de cette méthode ne sont plus à démontrer, la mise en oeuvre de cette technique pose un certain nombre de problèmes, à savoir quelles précisions et résolutions spatio-temporelles peuvent être atteintes, et par conséquent, quels sont les observables géophysiques accessibles. Mon travail de thèse a pour objectif d'apporter des éléments de réponse sur ce point, et est axé sur le développement méthodologique et l'exploitation géophysique des mesures de SNR réalisées par des stations GNSS classiques. Je me suis focalisé sur l'estimation des variations de hauteur de l'antenne par rapport à la surface réfléchissante (altimétrie) et de l'humidité du sol en domaine continental. La méthode d'inversion des mesures SNR que je propose a été appliquée avec succès pour déterminer les variations locales de : (1) la hauteur de la mer au voisinage du phare de Cordouan du 3 mars au 31 mai 2013 où les ondes de marées et la houle ont pu être parfaitement identifiées ; et (2) l'humidité du sol dans un champ agricole à proximité de Toulouse, du 5 février au 15 mars 2014. Ma méthode permet de s'affranchir de certaines restrictions imposées jusqu'à présent dans les travaux antérieurs, où la vitesse de variation verticale de la surface de réflexion était supposée négligeable. De plus, j'ai développé un simulateur qui m'a permis de tester l'influence de nombreux paramètres (troposphère, angle d'élévation du satellite, hauteur d'antenne, relief local, etc.) sur la trajectoire des ondes réfléchies et donc sur la position des points de réflexion. Mon travail de thèse montre que le GNSS-R est une alternative performante et un complément non négligeable aux techniques de mesure actuelles, en faisant le lien entre les différentes résolutions temporelles et spatiales actuellement atteintes par les outils classiques (sondes, radar, diffusiomètres, etc.). Cette technique offre l'avantage majeur d'être basé sur un réseau de satellites déjà en place et pérenne, et est applicable à n'importe quelle station GNSS géodésique, notamment celles des réseaux permanents (e.g., le RGP français). Ainsi, en installant une chaîne de traitement de ces acquisitions de SNR en domaine côtier, il serait possible d'utiliser les mesures continues des centaines de stations pré-existantes, et d'envisager de réaliser des mesures altimétriques à l'échelle locale, ou de mesurer l'humidité du sol pour les antennes situées à l'intérieur des terres. / GNSS reflectometry (or GNSS-R) is an original and opportunistic remote sensing technique based on the analysis of the electromagnetic waves continuously emitted by GNSS positioning systems satellites (GPS, GLONASS, etc.) that are captured by an antenna after reflection on the Earth's surface. These signals interact with the reflective surface and hence contain information about its properties. When they reach the antenna, the reflected waves interfere with those coming directly from the satellites. This interference is particularly visible in the signal-to-noise ratio (SNR) parameter recorded by conventional GNSS stations. It is thus possible to reverse the SNR time series to estimate the reflective surface characteristics. If the feasibility and usefulness of thismethod are well established, the implementation of this technique poses a number of issues. Namely the spatio-temporal accuracies and resolutions that can be achieved and thus what geophysical observables are accessible.The aim of my PhD research work is to provide some answers on this point, focusing on the methodological development and geophysical exploitation of the SNR measurements performed by conventional GNSS stations. I focused on the estimation of variations in the antenna height relative to the reflecting surface (altimetry) and on the soil moisture in continental areas. The SNR data inversion method that I propose has been successfully applied to determine local variations of : (1) the sea level near the Cordouan lighthouse (not far from Bordeaux, France) from March 3 to May 31, 2013, where the main tidal periods and waves have been clearly identified ; and (2) the soil moisture in an agricultural plot near Toulouse, France, from February 5 to March 15, 2014. My method eliminates some restrictions imposed in earlier work, where the velocity of the vertical variation of the reflective surface was assumed to be negligible. Furthermore, I developed a simulator that allowed me to assess the influence of several parameters (troposphere, satellite elevation angle, antenna height, local relief, etc.) on the path of the reflected waves and hence on the position of the reflection points. My work shows that GNSS-R is a powerful alternative and a significant complement to the current measurement techniques, establishing a link between the different temporal and spatial resolutions currently achieved by conventional tools (sensors, radar, scatterometer, etc.). This technique offers the major advantage of being based on already-developed and sustainable satellites networks, and can be applied to any GNSS geodetic station, including permanent networks (e.g., the French RGP). Therefore, by installing a processing chain of these SNR acquisitions, data from hundreds of pre-existing stations could be used to make local altimetry measurements in coastal areas or to estimate soil moisture for inland antennas.

Identiferoai:union.ndltd.org:theses.fr/2015TOU30327
Date26 November 2015
CreatorsRoussel, Nicolas
ContributorsToulouse 3, Ramillien, Guillaume, Frappart, Frédéric
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds