Return to search

Mobile Location Estimation Using Genetic Algorithm and Clustering Technique for NLOS Environments

For the mass demands of personalized security services, such as tracking, supervision, and emergent rescue, the location technologies of mobile communication have drawn much attention of the governments, academia, and industries around the world. However, existing location methods cannot satisfy the requirements of low cost and high accuracy. We hypothesized that a new mobile location algorithm based on the current GSM system will effectively improve user satisfaction. In this study, a prototype system will be developed, implemented, and experimented by integrating the useful information such as the geometry of the cell layout, and the related mobile positioning technologies. The intersection of the regions formed by the communication space of the base stations will be explored. Furthermore, the density-based clustering algorithm (DCA) and GA-based algorithm will be designed to analyze the intersection region and estimate the most possible location of a mobile phone. Simulation results show that the location error of the GA-based is less than 0.075 km for 67% of the time, and less than 0.15 km for 95% of the time. The results of the experiments satisfy the location accuracy demand of E-911.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0910107-134745
Date10 September 2007
CreatorsHung, Chung-Ching
ContributorsChung-nan Lee, Chun-I Fan, Cha-Hwa Lin
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0910107-134745
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0023 seconds