Let G be a connected graph with n vertices and let x=(x1, ..., xn) be a real vector. A positive (negative) sign graph of the vector x is a maximal connected subgraph of G on vertices xi>0 (xi<0). For an eigenvalue of a generalized Laplacian of a tree: We characterize the maximal number of sign graphs of an eigenvector. We give an O(n2) time algorithm to find an eigenvector with maximum number of sign graphs and we show that finding an eigenvector with minimum number of sign graphs is an NP-complete problem. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
Identifer | oai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:epub-wu-01_9f1 |
Date | January 2002 |
Creators | Biyikoglu, TĂĽrker |
Publisher | Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business |
Source Sets | Wirtschaftsuniversität Wien |
Language | English |
Detected Language | English |
Type | Paper, NonPeerReviewed |
Format | application/pdf |
Relation | http://epub.wu.ac.at/1270/ |
Page generated in 0.0019 seconds