Une approche efficace pour la résolution de problèmes inverses consiste à définir le signal (ou l'image) recherché(e) par minimisation d'un critère pénalisé. Ce dernier s'écrit souvent sous la forme d'une somme de fonctions composées avec des opérateurs linéaires. En pratique, ces fonctions peuvent n'être ni convexes ni différentiables. De plus, les problèmes auxquels on doit faire face sont souvent de grande dimension. L'objectif de cette thèse est de concevoir de nouvelles méthodes pour résoudre de tels problèmes de minimisation, tout en accordant une attention particulière aux coûts de calculs ainsi qu'aux résultats théoriques de convergence. Une première idée pour construire des algorithmes rapides d'optimisation est d'employer une stratégie de préconditionnement, la métrique sous-jacente étant adaptée à chaque itération. Nous appliquons cette technique à l'algorithme explicite-implicite et proposons une méthode, fondée sur le principe de majoration-minimisation, afin de choisir automatiquement les matrices de préconditionnement. L'analyse de la convergence de cet algorithme repose sur l'inégalité de Kurdyka-L ojasiewicz. Une seconde stratégie consiste à découper les données traitées en différents blocs de dimension réduite. Cette approche nous permet de contrôler à la fois le nombre d'opérations s'effectuant à chaque itération de l'algorithme, ainsi que les besoins en mémoire, lors de son implémentation. Nous proposons ainsi des méthodes alternées par bloc dans les contextes de l'optimisation non convexe et convexe. Dans le cadre non convexe, une version alternée par bloc de l'algorithme explicite-implicite préconditionné est proposée. Les blocs sont alors mis à jour suivant une règle déterministe acyclique. Lorsque des hypothèses supplémentaires de convexité peuvent être faites, nous obtenons divers algorithmes proximaux primaux-duaux alternés, permettant l'usage d'une règle aléatoire arbitraire de balayage des blocs. L'analyse théorique de ces algorithmes stochastiques d'optimisation convexe se base sur la théorie des opérateurs monotones. Un élément clé permettant de résoudre des problèmes d'optimisation de grande dimension réside dans la possibilité de mettre en oeuvre en parallèle certaines étapes de calculs. Cette parallélisation est possible pour les algorithmes proximaux primaux-duaux alternés par bloc que nous proposons: les variables primales, ainsi que celles duales, peuvent être mises à jour en parallèle, de manière tout à fait flexible. A partir de ces résultats, nous déduisons de nouvelles méthodes distribuées, où les calculs sont répartis sur différents agents communiquant entre eux suivant une topologie d'hypergraphe. Finalement, nos contributions méthodologiques sont validées sur différentes applications en traitement du signal et des images. Nous nous intéressons dans un premier temps à divers problèmes d'optimisation faisant intervenir des critères non convexes, en particulier en restauration d'images lorsque l'image originale est dégradée par un bruit gaussien dépendant du signal, en démélange spectral, en reconstruction de phase en tomographie, et en déconvolution aveugle pour la reconstruction de signaux sismiques parcimonieux. Puis, dans un second temps, nous abordons des problèmes convexes intervenant dans la reconstruction de maillages 3D et dans l'optimisation de requêtes pour la gestion de bases de données / An efficient approach for solving an inverse problem is to define the recovered signal/image as a minimizer of a penalized criterion which is often split in a sum of simpler functions composed with linear operators. In the situations of practical interest, these functions may be neither convex nor smooth. In addition, large scale optimization problems often have to be faced. This thesis is devoted to the design of new methods to solve such difficult minimization problems, while paying attention to computational issues and theoretical convergence properties. A first idea to build fast minimization algorithms is to make use of a preconditioning strategy by adapting, at each iteration, the underlying metric. We incorporate this technique in the forward-backward algorithm and provide an automatic method for choosing the preconditioning matrices, based on a majorization-minimization principle. The convergence proofs rely on the Kurdyka-L ojasiewicz inequality. A second strategy consists of splitting the involved data in different blocks of reduced dimension. This approach allows us to control the number of operations performed at each iteration of the algorithms, as well as the required memory. For this purpose, block alternating methods are developed in the context of both non-convex and convex optimization problems. In the non-convex case, a block alternating version of the preconditioned forward-backward algorithm is proposed, where the blocks are updated according to an acyclic deterministic rule. When additional convexity assumptions can be made, various alternating proximal primal-dual algorithms are obtained by using an arbitrary random sweeping rule. The theoretical analysis of these stochastic convex optimization algorithms is grounded on the theory of monotone operators. A key ingredient in the solution of high dimensional optimization problems lies in the possibility of performing some of the computation steps in a parallel manner. This parallelization is made possible in the proposed block alternating primal-dual methods where the primal variables, as well as the dual ones, can be updated in a quite flexible way. As an offspring of these results, new distributed algorithms are derived, where the computations are spread over a set of agents connected through a general hyper graph topology. Finally, our methodological contributions are validated on a number of applications in signal and image processing. First, we focus on optimization problems involving non-convex criteria, in particular image restoration when the original image is corrupted with a signal dependent Gaussian noise, spectral unmixing, phase reconstruction in tomography, and blind deconvolution in seismic sparse signal reconstruction. Then, we address convex minimization problems arising in the context of 3D mesh denoising and in query optimization for database management
Identifer | oai:union.ndltd.org:theses.fr/2015PESC1032 |
Date | 29 June 2015 |
Creators | Repetti, Audrey |
Contributors | Paris Est, Pesquet, Jean-Christophe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds