Return to search

Three-Dimensional Morphology of Polymer Nanocomposites Characterized by Transmission Electron Tomography

Electron tomography is an invaluable technique with the capability of carrying out thorough 3D structural, chemical and morphological characterization of materials at nanometer scale. Tilting range, increment and reconstruction algorithms are three of the main factors affecting the quality of tomograms. An anisotropic degradation can be observed with restricted tilting range and increment. Therefore, this study was carried out to investigate the accuracy of the reconstruction results of MgO (cube-shape) generated by FBP, SART and SIRT tomographic algorithms under various reconstruction conditions, i.e. tilting range and increment. Examining the experimental data with known morphology permits quantitative determination of the accuracy of the reconstruction results by measuring the distortion of the cube in all directions. Moreover, distortion measurements in all directions reveal the relationship between level of distortion and the alpha tilt angle. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/81765
Date22 July 2016
CreatorsYu, Ya-Peng
ContributorsMaterials Science and Engineering, Murayama, Mitsuhiro, Reynolds, William T. Jr., Corcoran, Sean G.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0021 seconds