It is demonstrated that for certain markets where traders have constant elasticity of substitution utility (CES) functions, the existence of a price equilibrium can be determined in polynomial time. It is also shown that for a certain range of elasticity of substitution where the CES market does not satisfy gross subsitutability that price equilibira can be computed in polynomial time. It is also shown that for markets satisfying gross substitutability, equilibria can be computed in polynomial time even if the excess demand is a correspondence. On the experimental side, equilibrium computation algorithms from computer science without running time guarantees are shown to be competitive with software packages used in applied microeconomics. Simulations also lend support to the Nash equilibrium solution concept by showing that agents employing heuristics in a restricted form of Texas Holdem converge to an approximate equilibrium. Monte Carlo simulations also indicate the long run preponderance of skill over chance in Holdem tournaments.
Identifer | oai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-1590 |
Date | 01 December 2009 |
Creators | McCune, Benton John |
Contributors | Varadarajan, Kasturi |
Publisher | University of Iowa |
Source Sets | University of Iowa |
Language | English |
Detected Language | English |
Type | dissertation |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | Copyright 2009 Benton John McCune |
Page generated in 0.0017 seconds