The piston-driven oscillator is traditionally modeled by directly applying boundary conditions to the acoustic wave equations; with better models re-deriving the wave equations but retaining nonlinear and viscous effects. These better models are required as the acoustic solution exhibits singularity near the natural frequencies of the cavity, with an unbounded (and therefore unphysical) solution. Recently, a technique has been developed to model general pressure oscillations in propulsion systems and combustion devices. Here, it is shown that this technique applies equally well to the piston-driven gas-column oscillator; and that the piston experiment provides strong evidence for the validity of the general theory. Using a modified piston-tube apparatus, agreement between predicted and observed limit-cycle amplitudes is observed to be on the order of 1%.
Identifer | oai:union.ndltd.org:UTENN_/oai:trace.tennessee.edu:utk_gradthes-1762 |
Date | 01 August 2010 |
Creators | Wilson, Andrew William |
Publisher | Trace: Tennessee Research and Creative Exchange |
Source Sets | University of Tennessee Libraries |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses |
Page generated in 0.0054 seconds