Return to search

NONLINEAR ACOUSTICS OF PISTON-DRIVEN GAS-COLUMN OSCILLATIONS

The piston-driven oscillator is traditionally modeled by directly applying boundary conditions to the acoustic wave equations; with better models re-deriving the wave equations but retaining nonlinear and viscous effects. These better models are required as the acoustic solution exhibits singularity near the natural frequencies of the cavity, with an unbounded (and therefore unphysical) solution. Recently, a technique has been developed to model general pressure oscillations in propulsion systems and combustion devices. Here, it is shown that this technique applies equally well to the piston-driven gas-column oscillator; and that the piston experiment provides strong evidence for the validity of the general theory. Using a modified piston-tube apparatus, agreement between predicted and observed limit-cycle amplitudes is observed to be on the order of 1%.

Identiferoai:union.ndltd.org:UTENN_/oai:trace.tennessee.edu:utk_gradthes-1762
Date01 August 2010
CreatorsWilson, Andrew William
PublisherTrace: Tennessee Research and Creative Exchange
Source SetsUniversity of Tennessee Libraries
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.0054 seconds