Este trabalho se propõe a estudar o comportamento assintótico dos sistemas dinâmicos autônomos respaldado na Teoria das Dimensões. Mais precisamente, vamos compreender de que maneira nos é útil limitar a dimensão fractal do atrator global de um semigrupo a fim de estudar a dinâmica em dimensão finita, sem que se perca informações sobre a dinâmica ao fazê-lo. Para tanto, o Teorema de Mañé tem um papel decisivo junto às propriedades da dimensão de Hausdorff e a da dimensão fractal; nos permitindo encontrar uma projeção cuja restrição ao atrator é injetora sobre um espaço de dimensão finita. Constatamos ainda que esta abordagem por projeções se aplica largamente a semigrupos originados de equações diferenciais em espaços de Banach de dimensão infinita. / In this work, we study the asymptotic behavior of autonomous dynamical systems supported on the Dimension Theory. More precisely, we understand how fractal dimension finiteness of the global attractor of a semigroup can be used to study the dynamics in finite dimension, without losing information on the dynamics in doing so. For this purpose, the Mañés Theorem plays a decisive role considering the Hausdorff dimension properties and the fractal dimension; thanks to which we managed to find a projection whose restriction to the attractor is an injective application over a finite dimensional space. Besides, we also acknowledge that this projections approach is largely applied to semigroups arrising from differential equations in infinite dimensional Banach spaces.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-07082015-113917 |
Date | 13 March 2015 |
Creators | Silva, Alex Pereira da |
Contributors | Carvalho, Alexandre Nolasco de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds