<p>WC/Co cemented carbide is a composite material for highly demanding wear applications. The unique combination of hardness (from the WC-phase) and toughness (from the binder Co) gives a material especially suitable for rock drilling. This thesis, investigates the deterioration and wear of these cemented carbide buttons and the correlation to different rock types.</p><p>To better understand the nature of the wear of the cemented carbide buttons, the counter surface –the rock- has also been studied. A range of important rock types has been investigated with respect to hardness distribution and scratch response in a micro scale and friction properties when slid against cemented carbides. </p><p>The cemented carbide may deteriorate due to a number of mechanisms. The effect of fatigue in the structure was studied in TEM and particle erosion response was used to probe the corresponding mechanical degradation. </p><p>Further, homing cross sectioning has been developed and used as a new technique to investigate the presence of weak zones in the surface layer of a drill button. It was found that rock penetration into this layer is a very common mechanism, with profound implications for the nature of the wear. </p><p>High resolution scanning electron microscopy has been extensively used to map the deterioration and wear of numerous drill buttons, worn against different rock types in different kinds of drilling applications. Finally, the collected data on the surface damage, the reptile skin formation, the rock intrusion and the properties of the rock are assembled into a new view of the deterioration and wear of cemented carbide in rock drilling. </p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-4223 |
Date | January 2004 |
Creators | Beste, Ulrik |
Publisher | Uppsala University, Department of Engineering Sciences, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1104-232X ; 964 |
Page generated in 0.0019 seconds