We refactor the traditional two-step approach of automatic speech recognition for spoken language translation. Instead of conventional graphemes, we use phonemes as an intermediate speech representation. Starting with the acoustic model, we revise the cross-lingual transfer and propose a coarse-to-fine method providing further speed-up and performance boost. Further, we review the translation model. We experiment with source and target encoding, boosting the robustness by utilizing the fine-tuning and transfer across ASR and SLT. We empirically document that this conventional setup with an alternative representation not only performs well on standard test sets but also provides robust transcripts and translations on challenging (e.g., non-native) test sets. Notably, our ASR system outperforms commercial ASR systems. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:416019 |
Date | January 2020 |
Creators | Polák, Peter |
Contributors | Bojar, Ondřej, Peterek, Nino |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds