This paper presents the early-stage simulation results of linear dark field control (LDFC) as a new approach to maintaining a stable dark hole within a stellar post-coronagraphic PSF. In practice, conventional speckle nulling is used to create a dark hole in the PSF, and LDFC is then employed to maintain the dark field by using information from the bright speckle field. The concept exploits the linear response of the bright speckle intensity to wavefront variations in the pupil, and therefore has many advantages over conventional speckle nulling as a method for stabilizing the dark hole. In theory, LDFC is faster, more sensitive, and more robust than using conventional speckle nulling techniques, like electric field conjugation, to maintain the dark hole. In this paper, LDFC theory, linear bright speckle characterization, and first results in simulation are presented as an initial step toward the deployment of LDFC on the UA Wavefront Control testbed in the coming year.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622027 |
Date | 02 September 2016 |
Creators | Miller, Kelsey, Guyon, Olivier |
Contributors | Univ Arizona, Steward Observ, Univ Arizona, Coll Opt Sci, College of Optical Sciences, Univ. of Arizona (United States), Univ. of Arizona (United States) |
Publisher | SPIE-INT SOC OPTICAL ENGINEERING |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2016 SPIE |
Relation | http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2232120 |
Page generated in 0.0016 seconds