In this thesis we consider problems Ax b arising from the discretization of ill-posed problems, where the right-hand side b is polluted by (unknown) noise. It was shown in [29] that under some natural assumptions, using the Golub-Kahan iterative bidiagonalization the noise level in the data can be estimated at a negligible cost. Such information can be further used in solving ill-posed problems. Here we suggest criteria for detecting the noise revealing iteration in the Golub-Kahan iterative bidiagonalization. We discuss the presence of noise of different colors. We study how the loss of orthogonality affects the noise revealing property of the bidiagonalization.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:300525 |
Date | January 2011 |
Creators | Vasilík, Kamil |
Contributors | Hnětynková, Iveta, Janovský, Vladimír |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds