Les travaux présentés dans cette Habilitation à Diriger des Recherches visent le développement de nouvelles stratégies neuromimétiques destinées à l'identification et à la commande de systèmes physiques complexes, non linéaires et non stationnaires. Les réseaux de neurones artificiels, également appelés modèles connexionnistes, sont abordés d'un point de vue du traitement du signal et du contrôle. Insérés dans des schémas d'identification et de commande, leurs capacités d'apprentissage rendent ces tâches plus robustes et plus autonomes. Nos études cherchent à développer de nouvelles approches neuromimétiques en prenant en compte de manière explicite des connaissances a priori afin de les rendre plus fidèles au système considéré et d'en améliorer l'identification ou la commande. De nombreux développements sont présentés, ils touchent le neurone formel, l'architecture des réseaux de neurones et la stratégie neuromimétique. Un neurone formel est optimisé. Différentes approches neuronales modulaires basées sur plusieurs réseaux de neurones sont proposées. Des schémas neuronaux issus d'une formalisation théorique d'un système sont étudiés. Cette formalisation repose sur l'expression des signaux internes du système et utilise des signaux synthétisés représentatifs de son évolution. Des associations entre des réseaux neuromimétiques et des techniques telles que la logique floue, des modèles statistiques, ou des modèles paramétriques sont développées. Les techniques neuronales proposées ont été validées expérimentalement. Nous avons montré que les modèles connexionnistes permettent incontestablement de développer des commandes avancées et efficaces à travers une démarche réfléchie.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00605218 |
Date | 27 November 2009 |
Creators | Wira, Patrice |
Publisher | Université de Haute Alsace - Mulhouse |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.0023 seconds