We present a method for extracting contours from digital images, using techniques from computational geometry. Our approach is different from traditional pixel-based methods in image processing. Instead of working directly with pixels, we extract a set of oriented feature points from the input digital images, then apply classical geometric techniques, such as clustering, linking, and simplification, to find contours among these points. Experiments on synthetic and natural images show that our method can effectively extract contours, even from images with considerable noise; moreover, the extracted contours have a very compact representation.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1399 |
Date | 01 May 2009 |
Creators | Tejada, Pedro J. |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu). |
Page generated in 0.0018 seconds