Return to search

Combustion Dynamics And Fluid Mechanics In Acoustically Perturbed Non-premixed Swirl-stabilized Flames.

The prevalence of gas turbines operating in primarily lean premixed modes is predicated on the need for lower emissions and increased efficiency. An enhancement in the mixing process through the introduction of swirl in the combustion reactants is also necessary for flame stabilization. The resulting lean swirling flames are often characterized by a susceptibility to feedback between velocity, pressure and heat release perturbations with a potential for unstable self-amplifying dynamics. The existing literature on combustion dynamics is predominantly dedicated to premixed flame configurations motivated by power generation and propulsive gas turbine applications. In the present research effort, an investigation into the response of atmospheric, non-premixed swirling flames to acoustic perturbations at various frequencies (fp = 0-315Hz) and swirl intensities (S=0.09 and S=0.34) is carried out. The primary objective of the research effort is to broaden the scope of fundamental understanding in flame dynamics in the literature to include non-premixed swirling flames. Applications of the research effort include control strategies to mitigate the occurrence of thermoacoustic instabilities in future power generation gas turbines. Flame heat release is quantitatively measured using a photomultiplier with a 430nm bandpass filter for observing CH* chemiluminescence which is simultaneously imaged with a phase-locked CCD camera. Acoustic perturbations are generated with a loudspeaker at the base of an atmospheric co-flow burner with resulting velocity oscillation amplitudes, u'/Uavg in the 0.03-0.30 range. The dependence of flame dynamics on the relative richness of the flame is investigated by studying various constant fuel flow rate flame configurations. The effect of varying fuel flow rates on the flame response is also examined using with dynamic time-dependent fuel supply rates over the data acquisition period. The Particle Image Velocimetry (PIV) method is used to study the isothermal flow field associated with acoustic pulsing. The acoustic impedance, wavelet analysis, Rayleigh criteria and phase conditioning methods are used to identify fundamental mechanisms common to highly responsive flame configurations.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-5268
Date01 January 2010
CreatorsIdahosa, Uyi
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0019 seconds