Return to search

Design and Validation of a High-Bandwidth Fuel Injection System for Control of Combustion Instabilities

The predictive design of fuel injection hardware used for active combustion control is not well established in the gas turbine industry. The primary reason for this is that the underlying mechanisms governing the flow rate authority downstream of the nozzle are not well understood. A detailed investigation of two liquid fuel flow modulation configurations is performed in this thesis: a piston and a throttle-valve configuration. The two systems were successfully built with piezoelectric actuation to drive the prime movers proportionally up to 800 Hz.

Discussed in this thesis are the important constituents of the fuel injection system that affect heat release authority: the method of fuel modulation, uncoupled dynamics of several components, and the compressibility of air trapped in the fuel line. Additionally, a novel technique to model these systems by way of one-dimensional, linear transmission line acoustic models was developed to successfully characterize the principle of operation of the two systems. Through these models, insight was gained on the modes through which modulation authority was dissipated and on methods through which successful amplitude scaling would be possible. At high amplitudes, it was found that the models were able to successfully predict the actual performance reasonably well for the piston device.

A proportional phase shifting controller was used to test the authority on a 40-kW rig with natural longitudinal modes. Results show that, under limited operating conditions, the sound pressure level at the limit cycle frequency was reduced by about 26 dB and the broadband energy was reduced by 23 dB. Attenuation of the fuel pulse at several combustor settings was due to fluctuating vorticity and temporal droplet distribution effects. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/31839
Date06 May 2003
CreatorsDeCastro, Jonathan Anthony
ContributorsMechanical Engineering, Saunders, William R., Vandsburger, Uri, Leo, Donald
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationETD_Jon_DeCastro.pdf

Page generated in 0.0023 seconds