Return to search

Simulation aux grandes échelles de l'allumage par bougie turbulent et de la propagation de la flamme dans les Moteurs à allumage commandé / Large Eddy simulation of the turbulent spark ignition and of the flame propagation in spark ignition engines

Le fonctionnement en régime très pauvre ou avec forts taux d'EGR des moteurs à allumage commandé (MAC) permet de réduire efficacement les émissions de CO2 et de Nox ; cependant ces stratégies se heurtent à l'augmentation des variabilités cycliques. Ces dernières sont principalement dues à la phase d'allumage qui devient critique de dilution. Le modèle ECFM-LES actuellement utilisé à IFPEn, basé sur la notion de densité de surface de flamme, est insuffisant pour décrire l'allumage dans ces conditions critiques. Dans ces travaux, l'approche TF-LES est adoptée, l'allumage étant alors décrit par un emballement cinétique des réactions chimiques lors d'une élévations locale de la température. Ces travaux définissent et évaluent une stratégie de simulation pour TF-LES en configuration moteur, qui permette une prédiction fine des allumages critiques et de la propagation turbulente de la flamme, afin de décrire le cycle moteur complet.Dans une première partie, des DNS d'allumages turbulents ont été réalisées, en modélisant la phase d'allumage par un dépôt d'énergie thermique (Lacaze et al., (2009)). Les calculs ont simulé les expériences d'allumage de Cardin et al. (2013), dans lesquelles l'énergie minimum d'allumage (MIE) d'un mélange mtéhane-air a été mesuré, pour différentes richesses pauvres et sous différentes intensités turbulentes. L'objectif principal des simulations a été de déterminer les paramètres numériques et physiques du modèle permettant de reproduire les allumages de l'expérience. Deux types de schémas cinétiques ont été évalués : un schéma simplifié et un schéma analytique (ARC), ce dernier reproduisant et les délais d'auto-allumage et la vitesse de flamme laminaire. Les résultats ont permis de définir des critères d'allumage et de mettre en évidence les différentes prédiction d'allumage avec les deux types de schémas cinétiques. Les résultats ont été également démontré que l'approche choisie permettait de prédire les bons niveaux d'énergie pour les allumages laminaires et à faible nombres de Kalovitz (Ka<10). Aux plus hauts nombres de Karlovitz, il a été montré que le modèle ED était insuffisant pour prédire les énergie d'allumage et qu'une description plus fine du dépôt d'énergie est nécessaire.Dans la seconde partie des travaux, un modèle de plissement dynamique (Wang et al., 2012) a été étudié, afin de décrire le développement hors-équilibre de la flamme dans la phase de propagation turbulente. Des études sur des flammes sphériques laminaires ont d'abord été menées. Ensuite, les premiers tests de configuration moteur ayant révélé des incompatibilités du modèle, des modifications ont été proposées. Le modèle de plissement dynamique modifié a été finalement évalué sur la configuration moteur ICAMDAC. Les résultats obtenus ont été comparés aux résultats obtenus par Robert et al. (2015) avec le modèle ECFM-LES, qui utilise une équation de transport de densité de surface de flamme décrivant le plissement hors-équilibre de la flamme. Les résultats obtenus avec le plissement dynamique sont en très bon accord avec ceux du modèles ECFM-LES, démontrant ainsi la capacité du modèle dynamique à prédire des valeurs de plissement hors-équilibre. D'autre part, le modèle dynamique s'ajustant automatiquement aux conditions de turbulence de l'écoulement, nul besoin n'est d'ajuster la constante de modélisation en fonction du régime moteur, comme c'est le cas pour l'équation de transport de la densité de surface de flamme. / The use of lean equivalence ratios or high EGR rates in spark ignition engines (SIE) enables to optimize CO2 and NOx emissions; however too important dilution rates leads to increased cycle-to-cycle variability. These latter are mostly due to the ignition phase, which becomes critical when dilution rates are important and requires high ignition energy. The ECFM-LES model currently used in IFPEN, which is based on the flame surface density concept, is not sufficient to describe ignition in these critical conditions. The TF-LES approach was chosen in this study, principally because it directly resolved chemistry and can thus model ignition via a local raise of the temperature. The present work defines and evaluates a simulation strategy for TF-LES in SIE configurations, that enables a fine prediction of critical ignitions and of the turbulent flame propagation.In the first part, DNS of turbulent ignition were performed. The ignition phase was modeled using a thermal energy deposit (ED model, Lacaze et al.). Simulations reproduced the ignition experiments of Cardin et al. who determined the minimum ignition energy (MIE) of lean premixed methane/air mixtures, for different turbulence characteristics. The main purpose of the study was to determine the numerical and physical model parameters, which enable to reproduce Cardin et al. experiments. Two types of kinetic schemes were evaluated: a simplified kinetic scheme and an analytical kinetic scheme (ARC), that can predict both the auto-ignition delays and the laminar flame speed, while keeping affordable CPU times. Results analysis enabled to define ignition criteria and to highlight the differences in terms of ignition prediction using the two kinetic schemes. Results also demonstrated that the chosen approach could recover correct levels of ignition energy for laminar and low Karlovitz number cases (Ka<10). For higher Karlovitz number cases, the ED model was found to be insufficient to predict the ignition and a finer description of the energy deposit is required.In the second part, a dynamic wrinkling model (Wang et al., 2012) was studied to describe the out-of-equilibrium behavior of the flame during the propagation phase. Studies on laminar spherical flames were first performed, to assess the laminar degeneration of the model. Then, as first tests in an engine configuration have revealed incompatibilities of the model, modifications were proposed. The modified dynamic model was finally tested in the ICAMDAC engine configuration. Results of the simulations were compared against previous results of Robert et al. obtained with the ECFM-LES model using a transport equation for the flame surface density that can describe the out-of-equilibrium wrinkling of the flame. Results obtained with the dynamic model are in very good agreement with the ones of Robert et al., thus demonstrating the ability of the dynamic model to predict out-of-equilibrium values in the engine configuration. Besides, the dynamic model self-adapts to the turbulence conditions, hence does not require any model parameter adjustment, as is it the case for models based on the flame surface density transport equation.

Identiferoai:union.ndltd.org:theses.fr/2016SACLC046
Date14 June 2016
CreatorsMouriaux, Sophie
ContributorsParis Saclay, Colin, Olivier, Veynante, Denis
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds