Extreme winter weather events in North America have become more frequent and increasingly destructive. This phenomenon was linked to a jet stream pattern that generates abnormally warm conditions in the west and cold conditions in the east, referred to as the North American Winter Dipole. Studies have shown that the Dipole may have amplified and this amplification could be linked to global warming. By analyzing the atmospheric and oceanic data worldwide, the wintertime circulation in the Northern Hemisphere shows signs of a persistent change after the 1980s. In the first part of this study, we examine how the ocean has changed in correspondence to the Dipole and the evolution of the pattern change. In the second part of this study, we use multiple global reanalysis datasets to construct the Dipole index. The result validates the reported Dipole variation during the modern period. We also use the Dipole variance to investigate the Dipole’s behavior in the paleoclimate and future warming conditions. Overall, we sought to better understand how the Dipole pattern evolves and how it may link to the different forcing, as a way to anticipate future change in North America’s winter.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8720 |
Date | 01 August 2019 |
Creators | Chien, Yu-Tang |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. |
Page generated in 0.0022 seconds