This thesis presents a generalized Bayesian framework for a mobile robot to localize itself and a target, while building a map of the environment. The proposed technique builds upon the Bayesian Simultaneous Robot Localization and Mapping (SLAM) method, to allow the robot to localize itself and the environment using map features or landmarks in close proximity. The target feature is distinguished from the rest of features since the robot has to navigate to its location and thus needs to be observed from a long distance. The contribution of the proposed approach is on enabling the robot to track a target object or region, using a multi-stage technique. In the first stage, the target state is corrected sequentially to the robot correction in the Recursive Bayesian Estimation. In the second stage, with the target being closer, the target state is corrected simultaneously with the robot and the landmarks. The process allows the robot's state uncertainty to be propagated into the estimated target's state, bridging the gap between tracking only methods where the target is estimated assuming known observer state and SLAM methods where only landmarks are considered. When the robot is located far, the sequential stage is efficient in tracking the target position while maintaining an accurate robot state using close only features. Also, target belief is always maintained in comparison to temporary tracking methods such as image-tracking. When the robot is closer to the target and most of its field of view is covered by the target, it is shown that simultaneous correction needs to be used in order to minimize robot, target and map entropies in the absence of other landmarks. / M.S. / This thesis presents a generalized framework with the goal of allowing a robot to localize itself and a static target, while building a map of the environment. This map is used as in the Simultaneous Localization and Mapping (SLAM) framework to enhance robot accuracy and with close features. Target, here, is distinguished from the rest of features since the robot has to navigate to its location and thus needs to be continuously observed from a long distance. The contribution of the proposed approach is on enabling the robot to track a target object or region, using a multi-stage technique. In the first stage, the robot and close landmarks are estimated simultaneously and they are both corrected. Using the robot's uncertainty in its estimate, the target state is then estimated sequentially, considering known robot state. That decouples the target estimation from the rest of the process. In the second stage, with the target being closer, target, robot and landmarks are estimated simultaneously. When the robot is located far, the sequential stage is efficient in tracking the target position while maintaining an accurate robot state using close only features. When the robot is closer to the target and most of its field of view is covered by the target, it is shown that simultaneous correction needs to be used in order to minimize robot, target and map uncertainties in the absence of other landmarks.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/93024 |
Date | January 2019 |
Creators | Papakis, Ioannis |
Contributors | Mechanical Engineering, Furukawa, Tomonari, Karpatne, Anuj, Komendera, Erik |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | Creative Commons Attribution-NonCommercial 3.0 United States, http://creativecommons.org/licenses/by-nc/3.0/us/ |
Page generated in 0.0019 seconds