Return to search

Cement-based Materials' Characterization using Ultrasonic Attenuation

The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the
civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the
application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a
high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material
(ultrasonic absorption), and the scattering losses due to the material heterogeneity.

The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste - a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of
existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the
effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop
a direct relationship between attenuation and water to cement (w/c) ratio. A phenomenological model based on the existence of fluid-filled capillary voids is used to help explain the experimentally observed behavior.

Overall this research shows the potential of using ultrasonic attenuation to quantitatively characterize cement paste. The absorption and scattering losses can be related to the individual microstructural elements of hardened cement paste. By taking a
fundamental, mechanics-based approach, it should be possible to add additional components such as scattering by aggregates or even microcracks in a systematic fashion and eventually build a
realistic model for ultrasonic wave propagation study for concrete.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/10493
Date05 April 2006
CreatorsPunurai, Wonsiri
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format5931431 bytes, application/pdf

Page generated in 0.0019 seconds