Return to search

Robust nonlinear decentralized control of robot manipulators

A new decentralized nonlinear controller for Robot Manipulators is
presented in this thesis. Based on concepts of Lyapunov stability theory and
some control ideas proposed in [3]-[7], we obtain continuous nonlinear
decentralized control laws which guarantee position and velocity tracking to
within an arbitrarily small error.
Assumptions based on physical constraints of manipulators are made to
guarantee the existence of the controller and asymptotic stability of the closed
loop system. Simulations show how well this rather simple control scheme works
on two of the links of the Puma 560 Manipulator.
The main contribution of this thesis is that it extends the results of a
class of complex centralized control algorithms to the decentralized robust
control of interconnected nonlinear subsystems like robot manipulators. / Graduation date: 1992

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/36919
Date04 December 1991
CreatorsJimenez, Ronald, 1964-
ContributorsMagana, Mario E.
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0018 seconds