Return to search

ROOM-TEMPERATURE OPTICAL NONLINEARITIES IN GALLIUM-ARSENIDE AND FAST OPTICAL LOGIC GATES.

This dissertation studies the physics of room-temperature optical nonlinearities in GaAs and their application to the optical logic gates. The microscopic origins of the room-temperature optical nonlinearities in GaAs are investigated experimentally and theoretically. The data of nonlinear absorption measurement are analyzed in the framework of a semiconductor plasma theory in combination with excitation-dependent line broadening. The importance of the plasma screening of the continuum-state Coulomb enhancement and band filling are emphasized for GaAs at room temperature. Optical bistability and optical logic gating are direct consequences of the nonlinear refractive index changes in etalons. The nonlinear index changes are directly measured by a new technique of observing the Fabry-Perot transmission peak shift using the self-photoluminescence as a broad-band source. The validity of a Kramers-Kronig technique under quasi-steady state conditions is crosschecked by an independent measurement of Δn under identical pumping conditions. Thermal index changes are also directly measured to establish the criteria on the temperature stability condition that is needed for reliable operation of devices based on dispersive nonlinearities. Optical logic gates based on dispersive optical nonlinearities may be the critical components of an all-optical computer in the future. Five optical logic functions are demonstrated in a nonlinear GaAs/AlGaAs MQW etalon. Specially designed dielectric mirrors are used to observe low-energy (3-pJ) operation of optical logic gates. Parallel operation using as many as eight optical logic devices is achieved with Wollaston prisms. Toward practical devices, optical logic gating using diode lasers is demonstrated in a setup much smaller than the usual argon-laser pumped dye laser setup. The cycle time of optical logic devices is limited, not by the switch-on time, but by the switch-off time which depends on the carrier relaxation rather than the switch-on time. To reduce the carrier relaxation time windowless GaAs is employed to take advantage of the faster surface recombination of carriers at the GaAs/dielectric mirror interface compared to that at the GaAs/GaAlAs interface. The speed and effectiveness of the windowless GaAs are compared with those of the proton-bombarded GaAs as optical logic gates.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/183920
Date January 1986
CreatorsLEE, YONG HEE.
ContributorsGibbs, Hyatt M., Peyghambarian, Nasser, Sargent, Murray
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0017 seconds