Return to search

Scalable Nonparametric L1 Density Estimation via Sparse Subtree Partitioning

We consider the construction of multivariate histogram estimators for any density f seeking to minimize its L1 distance to the true underlying density using arbitrarily large sample sizes. Theory for such estimators exist and the early stages of distributed implementations are available. Our main contributions are new algorithms which seek to optimise out unnecessary network communication taking place in the distributed stages of the construction of such estimators using sparse binary tree arithmetics.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-512936
Date January 2023
CreatorsSandstedt, Axel
PublisherUppsala universitet, Statistik, AI och data science
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationU.U.D.M. project report ; 2023:35

Page generated in 0.0724 seconds