Return to search

Estimation fonctionnelle non paramétrique au voisinage du bord / Functional non-parametric estimation near the edge

L’objectif de cette thèse est de construire des estimateurs non-paramétriques d’une fonction de distribution, d’une densité de probabilité et d’une fonction de régression en utilisant les méthodes d’approximation stochastiques afin de corriger l’effet du bord créé par les estimateurs à noyaux continus classiques. Dans le premier chapitre, on donne quelques propriétés asymptotiques des estimateurs continus à noyaux. Puis, on présente l’algorithme stochastique de Robbins-Monro qui permet d’introduire les estimateurs récursifs. Enfin, on rappelle les méthodes utilisées par Vitale, Leblanc et Kakizawa pour définir des estimateurs d’une fonction de distribution et d’une densité de probabilité en se basant sur les polynômes de Bernstein.Dans le deuxième chapitre, on a introduit un estimateur récursif d’une fonction de distribution en se basant sur l’approche de Vitale. On a étudié les propriétés de cet estimateur : biais, variance, erreur quadratique intégré (MISE) et on a établi sa convergence ponctuelle faible. On a comparé la performance de notre estimateur avec celle de Vitale et on a montré qu’avec le bon choix du pas et de l’ordre qui lui correspond notre estimateur domine en terme de MISE. On a confirmé ces résultatsthéoriques à l’aide des simulations. Pour la recherche pratique de l’ordre optimal, on a utilisé la méthode de validation croisée. Enfin, on a confirmé les meilleures qualités de notre estimateur à l’aide des données réelles. Dans le troisième chapitre, on a estimé une densité de probabilité d’une manière récursive en utilisant toujours les polynômes de Bernstein. On a donné les caractéristiques de cet estimateur et on les a comparées avec celles de l’estimateur de Vitale, de Leblanc et l’estimateur donné par Kakizawa en utilisant la méthode multiplicative de correction du biais. On a appliqué notre estimateur sur des données réelles. Dans le quatrième chapitre, on a introduit un estimateur récursif et non récursif d’une fonction de régression en utilisant les polynômes de Bernstein. On a donné les caractéristiques de cet estimateur et on les a comparées avec celles de l’estimateur à noyau classique. Ensuite, on a utilisé notre estimateur pour interpréter des données réelles. / The aim of this thesis is to construct nonparametric estimators of distribution, density and regression functions using stochastic approximation methods in order to correct the edge effect created by kernels estimators. In the first chapter, we givesome asymptotic properties of kernel estimators. Then, we introduce the Robbins-Monro stochastic algorithm which creates the recursive estimators. Finally, we recall the methods used by Vitale, Leblanc and Kakizawa to define estimators of distribution and density functions based on Bernstein polynomials. In the second chapter, we introduced a recursive estimator of a distribution function based on Vitale’s approach. We studied the properties of this estimator : bias, variance, mean integratedsquared error (MISE) and we established a weak pointwise convergence. We compared the performance of our estimator with that of Vitale and we showed that, with the right choice of the stepsize and its corresponding order, our estimator dominatesin terms of MISE. These theoretical results were confirmed using simulations. We used the cross-validation method to search the optimal order. Finally, we applied our estimator to interpret real dataset. In the third chapter, we introduced a recursive estimator of a density function using Bernstein polynomials. We established the characteristics of this estimator and we compared them with those of the estimators of Vitale, Leblanc and Kakizawa. To highlight our proposed estimator, we used real dataset. In the fourth chapter, we introduced a recursive and non-recursive estimator of a regression function using Bernstein polynomials. We studied the characteristics of this estimator. Then, we compared our proposed estimator with the classical kernel estimator using real dataset.

Identiferoai:union.ndltd.org:theses.fr/2018POIT2257
Date16 March 2018
CreatorsJemai, Asma
ContributorsPoitiers, Université de Carthage, Tunisie, Michel, Julien, Chaabane, Faouzi, Slaoui, Yousri
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.002 seconds