Return to search

ANALYZING THE PHENOTYPIC EFFECT OF THREE CANDIDATE GENES ASSOCIATED WITH NONSYNDROMIC CRANIOSYNOSTOSIS USING A ZEBRAFISH MODEL

In normal cranial suture development, the cranial sutures close at predetermined periods of development to allow the brain the capability to grow in a malleable environment. However, in craniosynostosis, cranial sutures prematurely fuse before birth which can lead to a wide range of developmental issues and complications. Craniosynostosis can be categorized as nonsyndromic which involves the sole fusion of one or more of the cranial sutures, or syndromic in which cranial sutures fuse as well as other abnormalities associated with a genetic disorder. Past research has identified three candidate genes that could be possible disease causing mutations in nonsyndromic sagittal craniosynostosis. The mutations were found were in ITGAV, SLC30A9, and BAMBI. Using zebrafish as a model organism, we assessed the phenotypic effects of mutating itgav, slc30a9, and bambia associated with craniosynostosis. Phenotypic analysis of heterozygous itgav mutants showed when itgav is mutated there is increased bone formation and abnormal suture development. Due to the phenotype seen in zebrafish, it is proposed when mutated, ITGAV can help produce craniosynostosis.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-6114
Date01 January 2017
CreatorsHept, Megan A
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0112 seconds