This thesis deals with depth estimation using convolutional neural networks. I propose a three-part model as a solution to this problem. The model contains a global context network which estimates coarse depth structure of the scene, a gradient network which estimates depth gradients and a refining network which utilizes the outputs of previous two networks to produce the final depth map. Additionally, I present a normalized loss function for training neural networks. Applying normalized loss function results in better estimates of the scene's relative depth structure, however it results in a loss of information about the absolute scale of the scene.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:255462 |
Date | January 2016 |
Creators | Ivanecký, Ján |
Contributors | Španěl, Michal, Hradiš, Michal |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds