Return to search

Odhad hloubky pomocí konvolučních neuronových sítí / Depth Estimation by Convolutional Neural Networks

This thesis deals with depth estimation using convolutional neural networks. I propose a three-part model as a solution to this problem. The model contains a global context network which estimates coarse depth structure of the scene, a gradient network which estimates depth gradients and a refining network which utilizes the outputs of previous two networks to produce the final depth map. Additionally, I present a normalized loss function for training neural networks. Applying normalized loss function results in better estimates of the scene's relative depth structure, however it results in a loss of information about the absolute scale of the scene.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:255462
Date January 2016
CreatorsIvanecký, Ján
ContributorsŠpaněl, Michal, Hradiš, Michal
PublisherVysoké učení technické v Brně. Fakulta informačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds