Neste trabalho foram estudados e aplicados vários métodos para reconhecimento de padrões e processamento de sinais, utilizando dados obtidos a partir de diferentes montagens experimentais de um Nariz Eletrônico, onde os sinais gerados por um conjunto de sensores condutivos em regime de temperatura variável, foram analisados com o objetivo de obter conjuntos de padrões que permitam identificar substâncias químicas. Adicionalmente foram discutidas estratégias de generalização da resposta dos sensores através da análise do tempo de resposta, sensibilidade e seletividade dos sensores. Foi discutida a utilização dos algoritmos de processamento de sinais e reconhecimento de padrões em forma conjunta com a finalidade de otimizar o processo de extração de informação e tomada de decisões a partir de um banco de dados. A utilização integrada do processamento de sinais e as técnicas de reconhecimento de padrões permitem definir e construir sistemas bem estruturados a partir dos quais pode ser extraída a informação desejada e conseqüente tomada de decisões, estas estruturas são conhecidas como DATAWAREHOUSE". A utilização de sistemas tipo DATAWAREHOUSE" permitirão a manipulação rápida da informação mesmo em bancos de dados de elevada e variada quantidade de dados. Foi proposta uma metodologia para a extração de informação a partir do sinal de ruído de um sensor de gás através da utilização de ajustes auto-regressivos conjuntamente com a aplicação do principio de máxima entropia. Com os resultados obtidos foi proposto um sistema de Nariz Eletrônico conformado apenas por um sensor de gás onde o processo de reconhecimento dos diferentes gases foi obtido através de um controlador Fuzzy. O Nariz Eletrônico proposto desta forma apresentou-se robusto e estável. / In this work, several methods for pattern recognition and signal processing were studied and applied, using data obtained from different experimental setup of the Electronic Nose. The signals were obtained from the array of conductive sensor into de Nose system, which worked under variable temperature condition. The signal analyses results were used to obtain patterns in order to identify different chemical substances. In addition it was discussed the possibility of the generalization of sensors response, in this sense the response time, sensibility and selectivity of each gas sensors were analyzed. It was discussed using together the signal processing algorithm and pattern recognition process in order to obtain an optimum process of the information extraction and make decision from the data bank. The integrated use of the signal process and pattern recognition promotes the definition and building of the well data banks structures known as DATAWAREHOUSE. These systems will promote the rapid and efficient data manipulation even with high and heterogeneous data banks. It was proposed an information extraction methodology from the noise signal of the gas sensor throughout auto regressive fitting process together with the Maximum Entropy Method. The Electronic Nose was proposed as consequence of the experimental results, the Nose system proposed contained only one gas sensor. The gas recognition process was made by Fuzzy controller system. This Electronic Nose showed a robust and stable behavior.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-15032006-173741 |
Date | 11 October 2005 |
Creators | Quispe, Germán Carlos Santos |
Contributors | Salcedo, Walter Jaimes |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0017 seconds