Redes Neurais Artificiais vêm sendo amplamente usada em uma variedade de áreas. Uma destas áreas é a previsão de séries temporais. Neste trabalho, uma investigação sobre a adequabilidade de usar os modelos de redes neurais conhecidos como Kohonen e Multi-Camadas com algoritmo Back-Propagation, na previsão de vazão, é realizada. Além disso, estes métodos são comparados com o Método dos Vizinhos Mais Próximos que tem sido utilizado para previsão de vazão. Uma análise comparativa é feita utilizando os dados da Bacia Hidrográfica do Rio Atibaia e os resultados mostram as vantagens e desvantagens de cada uma das técnicas utilizadas. / Artificial Neural Networks have been widely used in a variety of arcas. One of these arcas is time forecasting. In this work, neural network models known as Kohonen and Multi-layer perceptron with algorithm back-propagation are utilized in inflow forecasting. Moreover, these methods are compared with the nearest-neighbor method which have been utilized in inflow forecasting. A comparative analyze is made using the data of the Atibaia River basin and the results show the advantages and disadvantages of the techniques used.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24112017-103742 |
Date | 12 August 1996 |
Creators | Ballini, Rosangela |
Contributors | Romero, Roseli Aparecida Francelin |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0013 seconds