Neste trabalho é estudada a estabilidade de métodos de Runge-Kutta. A C-estabilidade algébrica é introduzida como uma extensão da estabilidade algébrica, o q permite a análise de métodos confluentes. É também apresentada uma alternativa para o método Direto de Liapunov a qual é útil no estudo da estabilidade de equações de diferenças. São estabelecidas as relações entre a estabilidade de Liapunov e os conceitos de estabilidade previamente colocados. É também introduzido um novo conceito de k-contratividade, o qual estende o conceito de contratividade e que pode ser usado para analisar a estabilidade de métodos de passo múltiplo e métodos cíclicos. Os resultados teóricos são ilustrados com aplicações. / Stability of Runge-Kutta methods is studied. An extension of algebraic stability, namely C-algebraic stability is introduced, permiting the analysis of confluent methods. An alternative to the Direct Liapunov method is presented, which is helpful in studying the stability of difference equations. Relationships with early stabilished concepts are presented. It is also introduced a new concept of k-contractivity which extends the concept of contractivity and can be used to analyse the stability of multistep methods and cyclic methods. Theorical results are always followed up by illustrative applications.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-25032019-161528 |
Date | 05 January 1990 |
Creators | Barcelos, Célia Aparecida Zorzo |
Contributors | Zago, Jose Vitorio |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0022 seconds