Return to search

Apprentissage et Noyau pour les Interfaces Cerveau-machine

Les Interface Cerveau-Machine (ICM) ont appliquées avec succès aussi bien dans le domain clinique que pour l'amélioration de la vie quotidienne de patients avec des handicaps. En tant que composante essentielle, le module de traitement du signal détermine nettement la performance d'un système ICM. Nous nous consacrons à améliorer les stratégies de traitement du signal du point de vue de l'apprentissage de la machine. Tout d'abord, nous avons développé un algorithme basé sur les SVM transductifs couplés aux noyaux multiples afin d'intégrer différentes vues des données (vue statistique ou une vue géométrique) dans le processus d'apprentissage. Deuxièmement, nous avons proposé une version en ligne de l'apprentissage multi-noyaux dans le cas supervisé. Les résultats expérimentaux montrent de meilleures performances par rapport aux approches classiques. De plus, l'algorithme proposé permet de sélectionner automatiquement les canaux de signaux EEG utiles grâce à l'apprentissage multi-noyaux. Dans la dernière partie, nous nous sommes attaqué à l'amélioration du module de traitement du signal au-delà des algorithmes d'apprentissage auomatique eux-mêmes. En analysant les données ICM hors-ligne, nous avons d'abord confirmé qu'un modèle de classification simple peut également obtenir des performances statisfaisantes en effectuant une sélection de caractéristiques (et.ou de canaux). Nous avons ensuite conçu un système émotionnel ICM par en tenant compte de l'état émotionnel de l'utilisateur. Sur la base des données de l'EEG obtenus avec différents états émotionnels, c'est-à-dire, positives, négatives et neutre émotions, nous avons finalement prouvé que l'émotion affecter les performances ICM en utilisant des tests statisques. Cette partie de la thèse propose des bases pour réaliser des ICM plus adaptées aux utilisateurs.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00699659
Date07 May 2012
CreatorsXilan, Tian
PublisherINSA de Rouen
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds