Return to search

Model Predictive Control Allocation

This thesis developes a control allocation method based on the Model Predictive Control algorithm, to be used on a missile in flight. The resulting Model Predictive Control Allocation (MPCA) method is able to account for actuator constraints and dynamics, setting it aside from most classical methods. A new effector configuration containing two groups of actuators with different dynamic authorities is also proposed. Using this configuration, the MPCA method is compared to the classical methods Linear Programming and Redistributed Pseudoinverse in various flight scenarios, highlighting performance differences aswell as emphasizing applications of the MPCA method. It is found to be superior to the two classical methods in terms of tracking performance and total cost. Nevertheless, some restrictions and weaknesses are revealed, but countermeasures to these are proposed. The newly developed convex optmization solver CVXGEN is utilized successfully in the method evaluation. Providing solve times in milliseconds even for large problems, CVXGEN makes real-time implementations of the MPCA method feasible.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ntnu-13308
Date January 2011
CreatorsHanger, Martin Bøgseth
PublisherNorges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, Institutt for teknisk kybernetikk
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds