Return to search

On the Hunter-Saxton equation

The Cauchy problem for a two-component Hunter-Saxton equation, begin{align*}(u_t+uu_x)_x&=frac{1}{2}u_x^2+frac{1}{2}rho^2,rho_t+(urho)_x) &= 0,end{align*}on $mathbb{R}times[0,infty)$ is studied. Conservative and dissipative weak solutions are defined and shown to exist globally. This is done by explicitly solving systems of ordinary differential equation in the Lagrangian coordinates, and using these solutions to construct semigroups of conservative and dissipative solutions.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ntnu-19057
Date January 2012
CreatorsNordli, Anders Samuelsen
PublisherNorges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, Institutt for matematiske fag
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds