Approved for public release, distribution is unlimited / Nuclear power is the next enabling technology in manned exploration of the solar system. Scientists and engineers continue to design multi-megawatt power systems, yet no power system in the 100 kilowatt, electric, range has been built and flown. Technology demonstrations and studies leave a myriad of systems from which decision makers can choose to build the first manned space nuclear power system. While many subsystem engineers plan in parallel, an accurate specific mass value becomes an important design specification, which is still uncertain. This thesis goes through the design features of the manned Mars mission, its power system requirements, their design attributes as well as their design faults. Specific mass is calculated statistically as well as empirically for 1-15MWe systems. Conclusions are presented on each subsystem as well as recommendations for decision makers on where development needs to begin today in order for the mission to launch in the future. / Lieutenant, United States Navy
Identifer | oai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/1214 |
Date | 12 1900 |
Creators | McGinnis, Scott J. |
Contributors | Michael, Sherif, Bursch, Daniel, Biblarz, Oscar, Naval Postgraduate School (U.S.)., Department of Mechanical and Astronautical Engineering |
Publisher | Monterey California. Naval Postgraduate School |
Source Sets | Naval Postgraduate School |
Detected Language | English |
Type | Thesis |
Format | xvi, 87 p. : ill. (some col.), col. maps, application/pdf |
Rights | This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. As such, it is in the public domain, and under the provisions of Title 17, United States Code, Section 105, may not be copyrighted. |
Page generated in 0.0022 seconds