Return to search

On some damage processes in risk and epidemic theories

Cette thèse traite de processus de détérioration en théorie du risque et en biomathématique.
En théorie du risque, le processus de détérioration étudié est celui des sinistres supportés par une compagnie d'assurance.
Le premier chapitre examine la distribution de Markov-Polya comme loi possible pour modéliser le nombre de sinistres et établit certains liens avec la famille de lois de Katz/Panjer. Nous construisons la loi de Markov-Polya sur base d'un modèle de survenance des sinistres et nous montrons qu'elle satisfait une récurrence élégante. Celle-ci permet notamment de déduire un algorithme efficace pour la loi composée correspondante. Nous déduisons la famille de Katz/Panjer comme famille limite de la loi de Markov-Polya.
Le second chapitre traite de la famille dite "Lagrangian Katz" qui étend celle de Katz/Panjer. Nous motivons par un problème de premier passage son utilisation comme loi du nombre de sinistres. Nous caractérisons toutes les lois qui en font partie et nous déduisons un algorithme efficace pour la loi composée. Nous examinons également son indice de dispersion ainsi que son comportement asymptotique.
Dans le troisième chapitre, nous étudions la probabilité de ruine sur horizon fini dans un modèle discret avec taux d'intérêt positifs. Nous déterminons un algorithme ainsi que différentes bornes pour cette probabilité. Une borne particulière nous permet de construire deux mesures de risque. Nous examinons également la possibilité de faire appel à de la réassurance proportionelle avec des niveaux de rétention égaux ou différents sur les périodes successives.
Dans le cadre de processus épidémiques, la détérioration étudiée consiste en la propagation d'une maladie de type SIE (susceptible - infecté - éliminé). La manière dont un infecté contamine les susceptibles est décrite par des distributions de survie particulières. Nous en déduisons la distribution du nombre total de personnes infectées à la fin de l'épidémie. Nous examinons en détails les épidémies dites de type Markov-Polya et hypergéométrique. Nous approximons ensuite cette loi par un processus de branchement. Nous étudions également un processus de détérioration similaire en théorie de la fiabilité où le processus de détérioration consiste en la propagation de pannes en cascade dans un système de composantes interconnectées.

Identiferoai:union.ndltd.org:BICfB/oai:ulb.ac.be:ETDULB:ULBetd-09202010-094829
Date14 September 2010
CreatorsGathy, Maude
ContributorsBruss, F. Thomas, Lefèvre, Claude, Latouche, Guy, Patie, Pierre, Deelstra, Griselda, Loisel, Stéphane, Reinhard, Jean-Marie
PublisherUniversite Libre de Bruxelles
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
LanguageEnglish
Detected LanguageFrench
Typetext
Formatapplication/pdf
Sourcehttp://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-09202010-094829/
Rightsmixed, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.

Page generated in 0.0027 seconds