A Large-Eddy Simulation (LES) methodology adapted to the resolution of high Reynolds number turbulent flows in supersonic conditions was proposed and developed. A novel numerical scheme was designed, that switches from a low-dissipation
central scheme for turbulence resolution to a flux difference splitting scheme in regions
of discontinuities. Furthermore, a state-of-the-art closure model was extended in order
to take compressibility effects and the action of shock / turbulence interaction into account.
The proposed method was validated against fundamental studies of high speed flows and shock / turbulence interaction studies. This new LES approach was employed for the study of shock / turbulent shear layer interaction as a mixing-augmentation technique, and highlighted the efficiency in mixing improvement after the interaction, but also the limited spatial extent of this turbulent enhancement. A second practical
study was conducted by simulating the injection of a sonic jet normally to a supersonic crossflow. The validity of the simulation was assessed by comparison with experimental
data, and the dynamics of the interaction was examined. The sources of vortical structures were identified, with a particular emphasis on the impact of the
flow speed onto the vortical evolution.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/28085 |
Date | 19 February 2009 |
Creators | Genin, Franklin Marie |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0021 seconds