Return to search

Regeneration of Elliptic Chains with Exceptional Linear Series

We study two dimension estimates regarding linear series on algebraic curves. First, we generalize the classical Brill-Noether theorem to many cases where the Brill-Noether number is negative. Second, we extend results of Eisenbud, Harris, and Komeda on the existence of Weierstrass points with certain semigroups, by refining their dimension estimate in light of combinatorial considerations. Both results are proved by constructing chains of elliptic curves, joined at pairs of points differed by carefully chosen orders of torsion, and smoothing these chains. These arguments lead to several combinatorial problems of separate interest. / Mathematics

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/12274140
Date06 June 2014
CreatorsPflueger, Nathan K
ContributorsHarris, Joseph D.
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0021 seconds