Return to search

A Two-Dimensional Numerical Simulation of Plasma Wake Structure Around a CubeSat

A numerical model was developed to understand the time evolution of a wake structure around a CubeSat moving in a plasma with transonic speed. A cubeSat operates in the F2 layer of ionosphere with an altitude of 300 − 600 Km. The average plasma density varies between 10−6cm−3 − 10−9cm−3 and the temperature of ions and electrons is found between 0.1−0.2 eV. The study of a wake structure can provide insights for its effects on the measurements obtained from space instruments. The CubeSat is modeled to have a metal surface, which is a realistic assumption, with a negative electric potential. To solve the equations of plasma, the numerical difference equations were obtained by discretizing the fluid equations of the plasma along with nonlinear Poisson’s equation. The electrons were assumed to follow the Boltzmann’s relation and the dynamics of ions was followed using the fluid equations. The initial and boundary conditions for the evolution of the structure are discussed. The computation was compared to the analytical solution for a 1D problem before being applied to the 2D model. There was a good agreement between the numerical and analytical solution. In the 2D simulation, we observe the formation of plasma wake structure around the CubeSat. The plasma wake structure consists of rarefaction region where ion density and ion velocity decreases compared to the initial density and velocity.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2021
Date01 August 2011
CreatorsMitharwal, Rajendra
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.002 seconds