One of the most crucial issues nowadays is the protection of the environment and the replacement of fossil fuels, which are abundantly used around the world, with more efficient and renewable sources. The highest portion of global energy demands today is used in heating and cooling purposes. One way of alleviating the fossil-based thermal energy uses is to harvest excess thermal energy using thermochemical storage materials (TCMs) for use at heating/cooling demands at different times and locations. Along this, in this master’s thesis, a bench-scale thermochemical heat storage (TCS) system is numerically designed, as a part of a collaborative project: Neutrons for Heat Storage (NHS), funded by Nordforsk. The TCS system that is designed herein employs the reversible chemical reaction of ammonia with a metal halide (MeX) for a heat storage capacity of 0.5 kWh, respectively releasing and storing heat during absorption and desorption of ammonia into and from the MeX. This system is designed for low temperature heat applications, around 40-80 °C. SrCl2 is chosen as the metal halide to be used, based on the research outcomes in determining the most suitable materials conducted by NHS project partners. In the ammonia-SrCl2 system, only the absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3 are considered. The main reason is because absorption/desorption between the last ammine and SrCl2 undergoes at a significantly higher/lower reaction pressure (for a given temperature), with a significant volume change compared to the rest of the ammines, and therefore is practically less cost effective. This thesis also includes a detailed discussion of four different thermochemical storage designs from literature, found as the most relevant to the present TCS system study, which use the reaction between ammonia and metal halides. The first system that was examined is a TCS system built by the NHS project partners at Technical University of Denmark (DTU), owing to its similarities with the desired project, regarding the design and parameters the system uses. This system works in batch mode, only allowing either absorption (i.e. heat release) or desorption (i.e. heat storage) at a given cycle. Thus, upgrading the design of this TCS system at DTU is considered as a most-likely solution to the research objectives of this current thesis project. Moreover, the TCS system at DTU uses storage conditions and desorption temperature similar to the current project’s desired low temperature range of 40-80 °C. The second system discussed herein from literature uses two reactors for cold and heat generation, which means that both charging and discharging processes occur simultaneously. This simultaneous operability is the main reason that this particular system was examined in this thesis. The next discussed system from literature also uses two reactors, for absorption and desorption processes, which work reversibly when each process is completed, like in the desired concept of this project. These two systems (i.e., the secondly and the thirdly discussed systems) use the reversible solid-gas reaction for absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3, however, the conditions of pressure and temperature between them differ. The second system from literature operates at desorption and absorption at respective conditions of 96 °C, 15 bar and 87 °C, 11 bar while the third system discussed operates at 103 °C, 16 bar and 59 °C, 3 bar during desorption and absorption respectively. The last system from literature that is discussed herein provides the same desorption temperature of 80 °C. Inaddition this particular study suggests that the reaction of solid with gaseous NH3 is better (than the solid with liquid NH3 reaction) based on results derived from several different low-pressure experiments of the reactions. The main differences between all these discussed systems from literature, as opposed to the desired TCS system design in this thesis project, concern the systems’ operating mode and the pressure and temperature-conditions. The first difference is that only one of the examined systems pumps the solid VIII powder salt around the system in contrast to the others that keep the salt static inside the reactors and pumped only the ammonia around the system, as chosen in the current system. The second difference concerns the operating conditions during absorption and desorption reactions, where these different systems operate at a widely different pressure and temperature conditions as compared to the current system expectations. Thus, there are four main lessons that were learnt via this literature analysis, to improve the TCS system at DTU to the desired new system in this work. The first lesson is related to the reactants’ transportation mechanism that should be used in this system. Regarding this, it was decided to maintain the solid salt (metal halide) stationary inside each reactor (but not pumping it instead of ammonia), similar to the majority of designs discussed from literature. According to the second and third lessons, the solid-gas reaction is the most suitable solution and only the reactions of absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3 are considered, following the experience from literature (for the reasons explained earlier). The last lesson regards the system’s suitable operating conditions and more specifically the TCS system’s temperatures that should match the district heating temperatures. Thus, the temperature point that was chosen as a priority was 80 °C, from the range 40- 80 °C set in the partner project NHS. To maintain this condition, therefore, the most suitable condition of pressure of both reactions (according to the equilibrium pressure vs temperature curve) was chosen to be at around 8 bar. This same pressure was chosen for both reactions, since the pressure difference between these reactors and the storage of ammonia (i.e. from 8 to 10 bar) should be as small as possible due to the high costs that can arise in the case of a higher pressure difference (i.e. requiring more compressors and heat exchangers). Inspired by these literature cases, firstly a conceptually suitable TCS system was proposed in this project and after that the final desired system was designed and was implemented and evaluated numerically. The numerical design and optimization of the chosen TCS system was performed herein by using the software Aspen Plus (version 9), which contains both fluids and solids in a simulation environment, using consistent physical properties. This TCS system is designed to store and release heat at around 80 °C and 8 bar through absorption and desorption by using two identical reactors respectively. Each reactor includes the amount of around 1 kg (more specifically 0.985 kg) strontium chloride salt reacting with 1.7 kg of ammonia. A verification system is also modelled in Aspen, using available experimental data from literature. Here, the modelled novel system design was adapted to this chosen other system layout from literature which uses the same reaction pair, yet at different operating conditions. This adapted system design in Aspen was then used to verify the chosen configuration and the reliability of the constructed system for the NHS project. Good agreements between the modelled results in Aspen against the available experimental data of this verification model are obtained. A sensitivity analysis is also conducted herein on the proposed novel TCS system to identify the optimum operating conditions and the behaviour of the chosen most important parameters of the system. The designed system provides an energy storage capacity of 0.5 kWh for the specific amounts (in volumetric flow rates) of ammonia and monoammine of strontium chloride, that comes from the analysis, of 1.08696 e-05 kmol/s and 1.5528 e-06 kmol/s respectively. For these specific values of the HTF, the analysis showed that the volumetric flow rates of the heat and cold external sources must be 1.56 l/min (which is decreasing with the increase of the inlet HTF temperature) and 0.42 l/min (which is increasing with the increase of the inlet HTF temperature) respectively. In conclusion, this study presents an ammonia-SrCl2 TCS benchscale system design that allows continuous heat storage and release, in an easy-to-scale up design, also suggesting optimum operating conditions. / En av de mest avgörande frågorna i dag är skyddet av miljön och utfasningen av fossila bränslen som används allmänt över hela världen för mer effektiva och förnybara resurser. Den största delen av den globala energibehovet idag avser uppvärmnings- och kylapplikationer. Ett sätt att minska fossilbaserad termiskenergianvändning är att lagra överskottsvärmeenergi genom termokemiska lagringsmaterial (TCM) och använda den för värme- och kylbehov vid olika tidpunkter och platser. I samband med detta är ett termokemiskt värmelagringssystem numeriskt utformat i detta mastersexamensprojekt, som en del av ett samarbetsprojekt Neutrons for Heat Storage (NHS) finansierat av Nordforsk. Det termokemiska lagringssystemet (TCS) som är konstruerat utnyttjar den reversibla kemiska reaktionen av ammoniak med en metallhalogenid (MeX) för en värmelagringskapacitet på 0.5 kWh, och frigör och lagrar värme respektive under absorption och desorption av ammoniak till och från MeX. Systemet är designat för lågtemperaturuppvärmningstillämpningar runt 40-80 °C. SrCl2 väljs som det mest lämpliga metallhalogeniden för systemet, baserat på studier som utförts av NHS-projektpartnerna. I ammoniak SrCl2-systemet beaktas endast absorption och desorption mellan SrCl2NH3 och SrCl28NH3. De huvudsakliga orsakerna till detta är att absorptionen/desorptionen mellan den sista aminen och SrCl2 kräver ett betydligt högre/lägre reaktionstryck (för en given temperatur), och resulterar i en betydande volymförändring jämfört med resten av aminerna, och är därför praktiskt taget mindre kostnadseffektivt. Detta mastersexamensprojekt inkluderar en detaljerad genomgång av fyra olika TCS-system från litteratur som använder reaktionen mellan ammoniak och metallhalogenider. Dessa väljs här eftersom dessa anses vara de mest relevanta (från litteratur) jämfört med det valda systemet i denna studie. Det första undersökta systemet är ett system byggt av NHS-projektpartnerna vid Danmarks Tekniska Universitet (DTU). Detta har valts på grund av likheterna med det önskade systemet i det aktuella mastersexamensprojektet, vad gäller systemdesign och parametrar. Detta system fungerar i batch-läge, vilket endast tillåter antingen absorption (dvs värmeavgivning) eller desorption (dvs värmelagring) under en specifik cykel. Således kan en uppgraderad design av detta TCS-system vid DTU möjligen vara en lämplig lösning på forskningsmålen för detta mastersexamensprojekt. Dessutom använder detta TCS-system från DTU ganska liknande driftsförhållanden (temperaturer och tryck) i nivå med det aktuella projektets önskade lågtemperaturintervall på 40-80 °C. Det andra systemet från den litteratur som diskuterats använder två reaktorer för kyla och värmeproduktion, vilket innebär att både laddningsoch urladdningsprocesser sker samtidigt. Denna samtidiga operation är främst anledningen till att systemet undersöktes, eftersom detta är en önskad funktion att uppnå i det aktuella projektet. Nästa system från den litteratur som diskuteras häri använder också två reaktorer för absorptions- och desorptionsprocesser, som fungerar reversibelt när varje process är klar, precis som önskat i detta projekt. Dessa två system (dvs det andra och det tredje diskuterade systemen) använder den reversibla fastgasreaktionen för absorption och desorption mellan SrCl2NH3 och SrCl28NH3, dock vid olika tryck- och temperaturförhållanden. Det andra systemet arbetar nämligen under kombinationer av absorption och desorption av 96 °C, 15 bar och 87 °C, 11 bar, medan det tredje systemet arbetar vid 103 °C, 16 bar respektive 59 °C, 3 bar. Det sista systemet som diskuterats från litteraturen arbetar vid samma temperatur som det önskade systemet gör (dvs. 80 ° C) och genom olika lågtrycksexperiment visar att den fasta salt-gasreaktionen är ett bättre val än reaktionen av det fasta saltet med flytande gasreaktion. De viktigaste skillnaderna mellan alla dessa diskuterade system från litteratur i motsats till det önskade TCS-system i detta mastersexamensprojekt, avser systemdriftläge samt deras tryck och X temperaturförhållanden. Den första skillnaden är att endast ett av alla undersökta system pumpar saltet i fast pulverform, till skillnad från de andra som håller saltet stillastående i reaktorerna och endast pumpar ammoniak. Den andra skillnaden gäller driftsförhållandena under absorptions- och desorptionsreaktioner där dessa system arbetar vid mycket olika tryck- och temperaturförhållanden jämfört med det nuvarande systemet. Således, från översynen av alla system, finns det fyra huvudsakliga lärdomar för att förbättra TCS-systemet vid DTU till det önskade nya systemet. Den första är relaterad till reaktanttransportmekanismen som bör användas i detta system. I detta avseende har det beslutats att hålla det fasta saltet (metallhalogenid) stillastående i varje reaktor (men inte pumpa det istället för ammoniak), till skillnad från de flesta system i litteraturen. Enligt dem andra och tredje lektionerna är den fasta gasreaktionen den mest lämpliga lösningen och endast reaktionerna på absorption och desorption mellan SrCl2∙NH3 och SrCl2∙8NH3 bör övervägas enligt erfarenheten från litteraturen (av de skäl som förklarats tidigare). Den sista lärdomen avser systemets lämpliga driftsförhållanden och mer specifikt TCS-systemets temperaturer för att matcha fjärrvärmetemperaturerna. Den temperaturpunkten valts som prioritet, från området 40-80 °C inställt av moderprojektet NHS, sattes till 80 °C. För att bibehålla detta tillstånd var det lämpligaste tryckvillkoret för båda reaktionerna (enligt jämviktstrycket kontra temperaturkurva) valdes att ligga på cirka 8 bar. Samma tryck valdes för båda reaktionerna, eftersom tryckskillnaden mellan dessa reaktorer och lagring av ammoniak (dvs. från 8 till 10 bar) borde vara så liten som möjligt på grund av de höga kostnaderna som kan uppstå vid högre tryckskillnad (dvs. fler kompressorer krävs och värmeväxlare). Inspirerad av denna litteratur föreslogs för det första ett konceptuellt lämpligt TCS-system i detta mastersexamensprojekt, varefter det slutliga systemet implementerades och utvärderades numeriskt för de önskade förhållandena. Den numeriska utformningen och optimeringen av det valda TCS-systemet utfördes här med hjälp av programvaran Aspen Plus (version 9), som innehåller både vätskor och fasta ämnen i en simuleringsmiljö, med konstant fysiska egenskaper. Detta TCS-system är utformat för att lagra och släppa värme vid cirka 80 °C och 8 bar genom absorption och desorption med användning av två identiska reaktorer respektive. Varje reaktor innefattar cirka 1 kg (närmare bestämt 0.985 kg) strontiumkloridsalt reagerande med 1.7 kg ammoniak. Ett verifieringssystem modelleras också i Aspen med hjälp av tillgängliga experimentella data från litteraturen. I detta anpassades den modellerade nya systemdesignen till denna valda andra verifieringssystemlayout från litteratur, som använder samma reaktionspar, men under olika driftsförhållanden. Denna anpassade systemdesign i Aspen användes sedan för att verifiera den valda konfigurationen och tillförlitligheten för det designade systemet för NHS-projektet. Här erhålls ett bra avtal för denna verifieringssystemdesign mellan Aspenmodellresultaten och experimentdata. Här utförs också en känslighetsanalys för det utformade TCSsystemet i det aktuella projektet för att identifiera de optimala driftsförhållandena och beteendet för de valda viktigaste parametrarna i systemet. Det konstruerade systemet ger en energilagringskapacitet på 0.5 kWh för de specifika mängderna (i volymflöde) av ammoniak och monoamin av strontiumklorid, som kommer från analysen, av 1.08696 e-05 kmol/s och 1.5528 e-06 kmol/s respektive. För dessa specifika värden på värmeöverföringsvätskan visade analysen att de volymetriska flödeshastigheterna för värme och kalla yttre källor måste vara 1.56 l/min (vilket minskar när temperaturen på värmeöverföringsvätskan ökar) och 0.42 l/min (som ökar när temperaturen på värmeöverföringsvätskan ökar). Sammanfattningsvis presenterar denna studie ett ammoniak-SrCl2 TCS-bänkskålsystem som möjliggör kontinuerlig värmelagring och frigöring, har en design som är lätt att anpassa och föreslår också optimala driftsförhållanden.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-263607 |
Date | January 2017 |
Creators | Laios, Michail |
Publisher | KTH, Energiteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ITM-EX ; 2019:74 |
Page generated in 0.0043 seconds