Indiana University-Purdue University Indianapolis (IUPUI) / Drug-drug interactions (DDIs) refer to situations where one drug affects the pharmacokinetics or pharmacodynamics of another. DDIs represent a major cause of morbidity and mortality. A common adverse drug reaction (ADR) that can result from, or be exacerbated by DDIs is drug-induced myopathy. Identifying DDIs and understanding their underlying mechanisms is key to the prevention of undesirable effects of DDIs and to efforts to optimize therapeutic outcomes. This dissertation is dedicated to identification of clinically important myopathic DDIs and to elucidation of their underlying mechanisms. Using data mined from the published cytochrome P450 (CYP) drug interaction literature, 13,197 drug pairs were predicted to potentially interact by pairing a substrate and an inhibitor of a major CYP isoform in humans. Prescribing data for these drug pairs and their associations with myopathy were then examined in a large electronic medical record database. The analyses identified fifteen drug pairs as DDIs significantly associated with an increased risk of myopathy. These significant myopathic DDIs involved clinically important drugs including alprazolam, chloroquine, duloxetine, hydroxychloroquine, loratadine, omeprazole, promethazine, quetiapine, risperidone, ropinirole, trazodone and simvastatin. Data from in vitro experiments indicated that the interaction between quetiapine and chloroquine (risk ratio, RR, 2.17, p-value 5.29E-05) may result from the inhibitory effects of quetiapine on chloroquine metabolism by cytochrome P450s (CYPs). The in vitro data also suggested that the interaction between simvastatin and loratadine (RR 1.6, p-value 4.75E-07) may result from synergistic toxicity of simvastatin and desloratadine, the major metabolite of loratadine, to muscle cells, and from the inhibitory effect of simvastatin acid, the active metabolite of simvastatin, on the hepatic uptake of desloratadine via OATP1B1/1B3. Our data not only identified unknown myopathic DDIs of clinical consequence, but also shed light on their underlying pharmacokinetic and pharmacodynamic mechanisms. More importantly, our approach exemplified a new strategy for identification and investigation of DDIs, one that combined literature mining using bioinformatic algorithms, ADR detection using a pharmacoepidemiologic design, and mechanistic studies employing in vitro experimental models.
Identifer | oai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/5275 |
Date | January 2014 |
Creators | Han, Xu |
Contributors | Flockhart, David A., Bies, Robert R., Desta, Zeruesenay, Li, Lang, Queener, Sherry F., Quinney, Sara K., Zhang, Jian-Ting |
Source Sets | Indiana University-Purdue University Indianapolis |
Language | en_US |
Detected Language | English |
Type | Thesis |
Rights | Attribution-NonCommercial-NoDerivs 3.0 United States, http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
Page generated in 0.002 seconds