Return to search

Object Detection for Contactless Vital Signs Estimation

This thesis explores the contactless estimation of people’s vital signs. We designed two camera-based systems and applied object detection algorithms to locate the regions of interest where vital signs are estimated. With the development of Deep Learning, Convolutional Neural Network (CNN) model has many applications in the real world nowadays. We applied the CNN based frameworks to the different types of camera based systems and improve the efficiency of the contactless vital signs estimation. In the field of medical healthcare, contactless monitoring draws a lot attention in the recent years because the wide use of different sensors. However most of the methods are still in the experimental phase and have never been used in real applications. We were interested in monitoring vital signs of patients lying in bed or sitting around the bed at a hospital. This required using sensors that have range of 2 to 5 meters. We developed a system based on the depth camera for detecting people’s chest area and the radar for estimating the respiration signal. We applied a CNN based object detection method to locate the position of the subject lying in the bed covered with blanket. And the respiratory-like signal is estimated from the radar device based on the detected subject’s location. We also create a manually annotated dataset containing 1,320 depth images. In each of the depth image the silhouette of the subject’s upper body is annotated, as well as the class. In addition, a small subset of the depth images also labeled four keypoints for the positioning of people’s chest
area. This dataset is built on the data collected from the anonymous patients at the hospital which is substantial. Another problem in the field of human vital signs monitoring is that systems seldom contain the functions of monitoring multiple vital signs at the same time. Though there are few attempting to work on this problem recently, they are still all prototypes and have a lot limitations like shorter operation distance. In this application, we focused on contactless estimating subjects’ temperature, breathing rate and heart rate at different distances with or without wearing the mask. We developed a system based on thermal and RGB camera and also explore the feasibility of CNN based object detection algorithms to detect the vital signs from human faces with specifically defined RoIs based on our thermal camera system. We proposed the methods to estimate respiratory rate and heart rate from the thermal videos and RGB videos. The mean absolute difference (MAE) between the
estimated HR using the proposed method and the baseline HR for all subjects at different distances is 4.24 ± 2.47 beats per minute, the MAE between the estimated RR and the reference RR for all subjects at different distances is 1.55 ± 0.78 breaths per minute.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42297
Date15 June 2021
CreatorsYang, Fan
ContributorsBolic, Miodrag
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0021 seconds